Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture


Network neuroscience has relied on a node-centric network model in which cells, populations and regions are linked to one another via anatomical or functional connections. This model cannot account for interactions of edges with one another. In this study, we developed an edge-centric network model that generates constructs ‘edge time series’ and ‘edge functional connectivity’ (eFC). Using network analysis, we show that, at rest, eFC is consistent across datasets and reproducible within the same individual over multiple scan sessions. We demonstrate that clustering eFC yields communities of edges that naturally divide the brain into overlapping clusters, with regions in sensorimotor and attentional networks exhibiting the greatest levels of overlap. We show that eFC is systematically modulated by variation in sensory input. In future work, the edge-centric approach could be useful for identifying novel biomarkers of disease, characterizing individual variation and mapping the architecture of highly resolved neural circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Derivation of the eFC matrix.
Fig. 2: Organization of the eFC matrix.
Fig. 3: Intra- and inter-participant similarity of eFC across scan sessions.
Fig. 4: Edge communities.
Fig. 5: Edge community entropy and overlap.
Fig. 6: System-level similarity of edge communities.
Fig. 7: Effect of passive movie watching on eFC.

Data availability

All imaging data come from publicly available, open access repositories. Human Connectome Project data can be accessed at https://db.humanconnectome.org/app/template/Login.vm after signing a data use agreement. Midnight Scan Club data can be accessed via OpenNeuro at https://openneuro.org/datasets/ds000224/versions/1.0.1. The Healthy Brain Network Serial Scanning Initiative data can be accessed at https://fcon_1000.projects.nitrc.org/indi/hbn_ssi/download.html.

Code availbility

Code to compute eFC and its related derivatives has been made available at https://github.com/brain-networks.


  1. 1.

    Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Schröter, M., Paulsen, O. & Bullmore, E. T. Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nat. Rev. Neurosci. 18, 131–146 (2017).

    PubMed  Google Scholar 

  3. 3.

    Dann, B., Michaels, J. A., Schaffelhofer, S. & Scherberger, H. Uniting functional network topology and oscillations in the fronto-parietal single unit network of behaving primates. eLife 5, e15719 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Park, H.-J. & Friston, K. Structural and functional brain networks: from connections to cognition. Science 342, 1238411 (2013).

  5. 5.

    Sporns, O. & Zwi, J. D. The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004).

    PubMed  Google Scholar 

  6. 6.

    Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E. Evidence for hubs in human functional brain networks. Neuron 79, 798–813 (2013).

    CAS  PubMed  Google Scholar 

  7. 7.

    Sporns, O. & Betzel, R. F. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).

    PubMed  Google Scholar 

  8. 8.

    Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    CAS  PubMed  Google Scholar 

  9. 9.

    Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    CAS  PubMed  Google Scholar 

  10. 10.

    Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    PubMed  Google Scholar 

  11. 11.

    Ahn, Y.-Y., Bagrow, J. P. & Lehmann, S. Link communities reveal multiscale complexity in networks. Nature 466, 761–764 (2010).

    CAS  PubMed  Google Scholar 

  12. 12.

    Evans, T. & Lambiotte, R. Line graphs, link partitions, and overlapping communities. Phys. Rev. E 80, 016105 (2009).

    CAS  Google Scholar 

  13. 13.

    Eickhoff, S. B., Constable, R. T. & Yeo, B. T. Topographic organization of the cerebral cortex and brain cartography. Neuroimage 170, 332–347 (2018).

    PubMed  Google Scholar 

  14. 14.

    de Reus, M. A., Saenger, V. M., Kahn, R. S. & van den Heuvel, M. P. An edge-centric perspective on the human connectome: link communities in the brain. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130527 (2014).

    Google Scholar 

  15. 15.

    Smith, S. M. et al. Network modelling methods for FMRI. Neuroimage 54, 875–891 (2011).

    PubMed  Google Scholar 

  16. 16.

    Reid, A. T. et al. Advancing functional connectivity research from association to causation. Nat. Neurosci. 22, 1751–1760 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    O’Connor, D. et al. The healthy brain network serial scanning initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions. Gigascience 6, giw011 (2017).

    Google Scholar 

  20. 20.

    van Oort, E. S. et al. Functional parcellation using time courses of instantaneous connectivity. Neuroimage 170, 31–40 (2018).

    PubMed  Google Scholar 

  21. 21.

    Esfahlani, F. Z., Bertolero, M. A., Bassett, D. S. & Betzel, R. F. Space-independent community and hub structure of functional brain networks. Neuroimage 211, 116612 (2020).

    Google Scholar 

  22. 22.

    Schaefer, A. et al. Local–global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    PubMed  Google Scholar 

  23. 23.

    Laumann, T. O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–670 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Amico, E. & Goñi, J. The quest for identifiability in human functional connectomes. Sci. Rep. 8, 8254 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl Acad. Sci. USA 108, 7641–7646 (2011).

    CAS  PubMed  Google Scholar 

  26. 26.

    Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Anderson, M. L., Kinnison, J. & Pessoa, L. Describing functional diversity of brain regions and brain networks. Neuroimage 73, 50–58 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Pessoa, L. Understanding brain networks and brain organization. Phys. Life Rev. 11, 400–435 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Yeo, B. T., Krienen, F. M., Chee, M. W. & Buckner, R. L. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. Neuroimage 88, 212–227 (2014).

    PubMed  Google Scholar 

  30. 30.

    Wilf, M. et al. Spontaneously emerging patterns in human visual cortex reflect responses to naturalistic sensory stimuli. Cereb. Cortex 27, 750–763 (2017).

    PubMed  Google Scholar 

  31. 31.

    Baldassano, C., Hasson, U. & Norman, K. A. Representation of real-world event schemas during narrative perception. J. Neurosci. 38, 9689–9699 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 19, 17 (2018).

    CAS  Google Scholar 

  33. 33.

    Shine, J. M. et al. Estimation of dynamic functional connectivity using multiplication of temporal derivatives. Neuroimage 122, 399–407 (2015).

    PubMed  Google Scholar 

  34. 34.

    Liu, X. & Duyn, J. H. Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc. Natl Acad. Sci. USA 110, 4392–4397 (2013).

    CAS  PubMed  Google Scholar 

  35. 35.

    Newman, M. E. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).

    CAS  Google Scholar 

  36. 36.

    Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).

    CAS  PubMed  Google Scholar 

  37. 37.

    Bertolero, M. A., Yeo, B. T. & D’Esposito, M. The modular and integrative functional architecture of the human brain. Proc. Natl Acad. Sci. USA 112, E6798–E6807 (2015).

    CAS  PubMed  Google Scholar 

  38. 38.

    Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

    CAS  PubMed  Google Scholar 

  39. 39.

    Cole, M. W. et al. Task activations produce spurious but systematic inflation of task functional connectivity estimates. Neuroimage 189, 1–18 (2019).

    PubMed  Google Scholar 

  40. 40.

    Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Esfahlani, F. Z. et al. High-amplitude co-fluctuations in cortical activity drive functional connectivity. Preprint at bioRxiv https://doi.org/10.1101/800045 (2020).

  42. 42.

    Lurie, D. J. et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw. Neurosci. 4, 30–69 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B. & Diedrichsen, J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat. Neurosci. 22, 1371–1378 (2019).

    CAS  PubMed  Google Scholar 

  44. 44.

    Pereira, F., Mitchell, T. & Botvinick, M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45, S199–S209 (2009).

    PubMed  Google Scholar 

  45. 45.

    Huys, Q. J., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19, 404 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    McIntosh, A. R. & Mišić, B. Multivariate statistical analyses for neuroimaging data. Annu. Rev. Psychol. 64, 499–525 (2013).

    PubMed  Google Scholar 

  47. 47.

    Zalesky, A., Fornito, A. & Bullmore, E. On the use of correlation as a measure of network connectivity. Neuroimage 60, 2096–2106 (2012).

    PubMed  Google Scholar 

  48. 48.

    Owen, L. L., Chang, T. H. & Manning, J. R. High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns. Preprint at bioRxiv https://doi.org/10.1101/763821 (2019).

  49. 49.

    Sizemore, A. E., Phillips-Cremins, J. E., Ghrist, R. & Bassett, D. S. The importance of the whole: topological data analysis for the network neuroscientist. Netw. Neurosci. 3, 656–673 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Khambhati, A. N. et al. Dynamic network drivers of seizure generation, propagation and termination in human neocortical epilepsy. PLoS Comput. Biol. 11, e1004608 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Shine, J. M. et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat. Neurosci. 22, 289–296 (2019).

    CAS  PubMed  Google Scholar 

  52. 52.

    Davison, E. N. et al. Brain network adaptability across task states. PLoS Comput. Biol. 11, e1004029 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Robinson, E. C. et al. MSM: a new flexible framework for multimodal surface matching. Neuroimage 100, 414–426 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    CAS  PubMed  Google Scholar 

  56. 56.

    Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).

    CAS  PubMed  Google Scholar 

  59. 59.

    Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    CAS  Google Scholar 

  61. 61.

    Klein, A. et al. Mindboggling morphometry of human brains. PLoS Comput. Biol. 13, e1005350 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. & Collins, D. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47, S102 (2009).

  63. 63.

    Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    CAS  PubMed  Google Scholar 

  64. 64.

    Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    PubMed  Google Scholar 

  65. 65.

    Wang, S. et al. Evaluation of field map and nonlinear registration methods for correction of susceptibility artifacts in diffusion MRI. Front. Neuroinform. 11, 17 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Treiber, J. M. et al. Characterization and correction of geometric distortions in 814 diffusion weighted images. PLoS ONE 11, e0152472 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    PubMed  Google Scholar 

  69. 69.

    Esteban, O. et al. MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE 12, e0184661 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Parkes, L., Fulcher, B., Yücel, M. & Fornito, A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Neuroimage 171, 415–436 (2018).

    PubMed  Google Scholar 

  71. 71.

    Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1126–1165 (2011).

  72. 72.

    Fischl, B. et al. Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11–22 (2004).

    PubMed  Google Scholar 

  73. 73.

    Lindquist, M. A., Geuter, S., Wager, T. D. & Caffo, B. S. Modular preprocessing pipelines can reintroduce artifacts into fMRI data. Hum. Brain Mapp. 40, 2358–2376 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64, 240–256 (2013).

    PubMed  Google Scholar 

  75. 75.

    Gopalan, P. K. & Blei, D. M. Efficient discovery of overlapping communities in massive networks. Proc. Natl Acad. Sci. USA 110, 14534–14539 (2013).

    CAS  PubMed  Google Scholar 

  76. 76.

    Yang, J. & Leskovec, J. Overlapping communities explain core-periphery organization of networks. Proc. IEEE 102, 1892–1902 (2014).

    Google Scholar 

  77. 77.

    Psorakis, I., Roberts, S., Ebden, M. & Sheldon, B. Overlapping community detection using Bayesian non-negative matrix factorization. Phys. Rev. E 83, 066114 (2011).

    Google Scholar 

  78. 78.

    Najafi, M., McMenamin, B. W., Simon, J. Z. & Pessoa, L. Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions. Neuroimage 135, 92–106 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Guimera, R. & Amaral, L. A. N. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Shinn, M. et al. Versatility of nodal affiliation to communities. Sci. Rep. 7, 1–10 (2017).

    CAS  Google Scholar 

  81. 81.

    Pedersen, M., Zalesky, A., Omidvarnia, A. & Jackson, G. D. Multilayer network switching rate predicts brain performance. Proc. Natl Acad. Sci. USA 115, 13376–13381 (2018).

    CAS  PubMed  Google Scholar 

  82. 82.

    Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006).

    Google Scholar 

  83. 83.

    Traag, V. A., Van Dooren, P. & Nesterov, Y. Narrow scope for resolution-limit-free community detection. Phys. Rev. E 84, 016114 (2011).

    CAS  Google Scholar 

  84. 84.

    Bazzi, M. et al. Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Model. Simul. 14, 1–41 (2016).

    Google Scholar 

  85. 85.

    Betzel, R. F. et al. The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability. Neuroimage 202, 115990 (2019).

    PubMed  Google Scholar 

  86. 86.

    Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).

    CAS  PubMed  Google Scholar 

  87. 87.

    Smith, S. M. et al. A positive–negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1565–1567 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


This research was supported by the Indiana University Office of the Vice President for Research Emerging Area of Research Initiative, Learning: Brains, Machines and Children (F.Z.E. and R.F.B.). This material is based on work supported by the National Science Foundation Graduate Research Fellowship under grant no. 1342962 (J.F.). This research was supported, in part, by the Lilly Endowment, through its support for the Indiana University Pervasive Technology Institute and, in part, by the Indiana METACyt Initiative. The Indiana METACyt Initiative at Indiana University was also supported, in part, by the Lilly Endowment. Data were provided, in part, by the Human Connectome Project, WU-Minn Consortium (principal investigators: D. Van Essen and K. Ugurbil; 1U54MH091657), funded by the 16 National Institues of Health (NIH) institutes and centers that support the NIH Blueprint for Neuroscience Research and by the McDonnell Center for Systems Neuroscience at Washington University. We thank B. Mišić for reading an early version of this manuscript.

Author information




J.F. and R.F.B. conceived of the study, processed data, carried out all analyses and wrote the first draft of the manuscript. F.Z.E., Y.J. and O.S. contributed to project direction via discussion. All authors helped revise and write the submitted manuscript.

Corresponding author

Correspondence to Richard F. Betzel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Lucina Uddin, Andrew Zalesky, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24 and Supplementary Table 1.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faskowitz, J., Esfahlani, F.Z., Jo, Y. et al. Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. Nat Neurosci 23, 1644–1654 (2020). https://doi.org/10.1038/s41593-020-00719-y

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing