Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans

Abstract

Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that a number of these AAVs specifically target expression to neuronal and glial cell types in the mouse and non-human primate retina in vivo and in the human retina in vitro. We demonstrate applications for recording and stimulation, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo cell-type targeting in mouse retina.
Fig. 2: AND/OR logic for cell-type targeting by AAVs.
Fig. 3: Recording and modulating activity of AAV-targeted cells.
Fig. 4: In vivo cell-type targeting in NHP retina.
Fig. 5: In vitro cell-type targeting in the human retina.
Fig. 6: Quantitative metrics of the similarity of AAV expression in retinal cell groups in mice, NHPs and humans.

Similar content being viewed by others

Data availability

The AAV expression patterns of synthetic promoters described here have been made available in a public database (https://data.fmi.ch/promoterDB/). Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, B. Roska (botond.roska@iob.ch) on signing a material transfer agreement.

Code availability

The computer codes and algorithms used in this study are available upon reasonable request.

References

  1. Planul, A. & Dalkara, D. Vectors and gene delivery to the retina. Annu. Rev. Vis. Sci. 3, 121–140 (2017).

    Article  Google Scholar 

  2. Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72, 8568–8577 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Penaud-Budloo, M. et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J. Virol. 82, 7875–7885 (2008).

    Article  CAS  Google Scholar 

  4. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  Google Scholar 

  5. Palfi, A. et al. Efficacy of codelivery of dual AAV2/5 vectors in the murine retina and hippocampus. Hum. Gene Ther. 23, 847–858 (2012).

    Article  CAS  Google Scholar 

  6. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article  CAS  Google Scholar 

  7. Oh, M. S., Hong, S. J., Huh, Y. & Kim, K.-S. Expression of transgenes in midbrain dopamine neurons using the tyrosine hydroxylase promoter. Gene Ther. 16, 437–440 (2009).

    Article  CAS  Google Scholar 

  8. Khabou, H. et al. Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight 3, 96029 (2018).

    Article  Google Scholar 

  9. Cronin, T. et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol. Med. 6, 1175–1190 (2014).

    Article  CAS  Google Scholar 

  10. Nathanson, J. L. et al. Short promoters in viral vectors drive selective expression in mammalian inhibitory neurons, but do not restrict activity to specific inhibitory cell-types. Front. Neural Circuits 3, 19 (2009).

    Article  Google Scholar 

  11. Dimidschstein, J. et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 19, 1743–1749 (2016).

    Article  CAS  Google Scholar 

  12. Beltran, W. A. et al. Optimization of retinal gene therapy for X-linked retinitis pigmentosa due to RPGR mutations. Mol. Ther. 25, 1866–1880 (2017).

    Article  CAS  Google Scholar 

  13. Chaffiol, A. et al. A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina. Mol. Ther. 25, 2546–2560 (2017).

    Article  CAS  Google Scholar 

  14. Hanlon, K. S. et al. A novel retinal ganglion cell promoter for utility in AAV vectors. Front. Neurosci. 11, 521 (2017).

    Article  Google Scholar 

  15. Dashkoff, J. et al. Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9. Mol. Ther. Methods Clin. Dev. 3, 16081 (2016).

    Article  Google Scholar 

  16. Lu, Q. et al. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. Gene Ther. 23, 680–689 (2016).

    Article  CAS  Google Scholar 

  17. Siegert, S. et al. Transcriptional code and disease map for adult retinal cell types. Nat. Neurosci. 15, 487–495 (2012).

    Article  CAS  Google Scholar 

  18. Hartl, D., Krebs, A. R., Jüttner, J., Roska, B. & Schübeler, D. Cis-regulatory landscapes of four cell types of the retina. Nucleic Acids Res. 45, 11607–11621 (2017).

    Article  CAS  Google Scholar 

  19. Kleinlogel, S. et al. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat. Neurosci. 14, 513–518 (2011).

    Article  CAS  Google Scholar 

  20. Allocca, M. et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J. Virol. 81, 11372–11380 (2007).

    Article  CAS  Google Scholar 

  21. Lebherz, C., Maguire, A., Tang, W., Bennett, J. & Wilson, J. M. Novel AAV serotypes for improved ocular gene transfer. J. Gene Med. 10, 375–382 (2008).

    Article  CAS  Google Scholar 

  22. Grieger, J. C., Choi, V. W. & Samulski, R. J. Production and characterization of adeno-associated viral vectors. Nat. Protoc. 1, 1412–1428 (2006).

    Article  CAS  Google Scholar 

  23. Zhu, X. et al. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors. Mol. Vis. 8, 462–471 (2002).

    CAS  PubMed  Google Scholar 

  24. Masland, R. H. The fundamental plan of the retina. Nat. Neurosci. 4, 877–886 (2001).

    Article  CAS  Google Scholar 

  25. Wässle, H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757 (2004).

    Article  Google Scholar 

  26. Haverkamp, S. & Wässle, H. Immunocytochemical analysis of the mouse retina. J. Comp. Neurol. 424, 1–23 (2000).

    Article  CAS  Google Scholar 

  27. Sarthy, V. P. et al. Establishment and characterization of a retinal Müller cell line. Invest. Ophthalmol. Vis. Sci. 39, 212–216 (1998).

    CAS  PubMed  Google Scholar 

  28. Jeon, C. J., Strettoi, E. & Masland, R. H. The major cell populations of the mouse retina. J. Neurosci. 18, 8936–8946 (1998).

    Article  CAS  Google Scholar 

  29. Ortín-Martínez, A. et al. Number and distribution of mouse retinal cone photoreceptors: differences between an albino (Swiss) and a pigmented (C57/BL6) strain. PLoS One 9, e102392 (2014).

    Article  Google Scholar 

  30. Rice, D. S. & Curran, T. Disabled-1 is expressed in type AII ACs in the mouse retina. J. Comp. Neurol. 424, 327–338 (2000).

    Article  CAS  Google Scholar 

  31. Sun, W., Li, N. & He, S. Large-scale morphological survey of mouse retinal GCs. J. Comp. Neurol. 451, 115–126 (2002).

    Article  Google Scholar 

  32. Salinas-Navarro, M. et al. Retinal GC population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution. Vision Res. 49, 637–647 (2009).

    Article  CAS  Google Scholar 

  33. Kwong, J. M. K., Quan, A., Kyung, H., Piri, N. & Caprioli, J. Quantitative analysis of retinal GC survival with Rbpms immunolabeling in animal models of optic neuropathies. Invest. Ophthalmol. Vis. Sci. 52, 9694–9702 (2011).

    Article  Google Scholar 

  34. Yau, K.-W. & Hardie, R. C. Phototransduction motifs and variations. Cell 139, 246–264 (2009).

    Article  CAS  Google Scholar 

  35. Metea, M. R. & Newman, E. A. Calcium signaling in specialized glial cells. Glia 54, 650–655 (2006).

    Article  Google Scholar 

  36. Newman, E. A. Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J. Neurosci. 25, 5502–5510 (2005).

    Article  CAS  Google Scholar 

  37. Farber, D. B., Flannery, J. G. & Bowes-Rickman, C. The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Prog. Retin. Eye Res. 13, 31–64 (1994).

    Article  CAS  Google Scholar 

  38. Wikler, K. C., Williams, R. W. & Rakic, P. Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina. J. Comp. Neurol. 297, 499–508 (1990).

    Article  CAS  Google Scholar 

  39. Kolb, H. et al. Are there three types of horizontal cell in the human retina? J. Comp. Neurol. 343, 370–386 (1994).

    Article  CAS  Google Scholar 

  40. Endo, T., Kobayashi, M., Kobayashi, S. & Onaya, T. Immunocytochemical and biochemical localization of parvalbumin in the retina. Cell Tissue Res. 243, 213–217 (1986).

    Article  CAS  Google Scholar 

  41. Smith, R. H. Adeno-associated virus integration: virus versus vector. Gene Ther. 15, 817–822 (2008).

    Article  CAS  Google Scholar 

  42. Weleber, R. G. et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology 123, 1606–1620 (2016).

    Article  Google Scholar 

  43. Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

    Article  CAS  Google Scholar 

  44. Roska, B. & Sahel, J.-A. Restoring vision. Nature 557, 359–367 (2018).

    Article  CAS  Google Scholar 

  45. Siegert, S. et al. Genetic address book for retinal cell types. Nat. Neurosci. 12, 1197–1204 (2009).

    Article  CAS  Google Scholar 

  46. Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374–378 (2003).

    Article  CAS  Google Scholar 

  47. Mathelier, A. et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44, D110–D115 (2016).

    Article  CAS  Google Scholar 

  48. Byrne, B. J., Davis, M. S., Yamaguchi, J., Bergsma, D. J. & Subramanian, K. N. Definition of the simian virus 40 early promoter region and demonstration of a host range bias in the enhancement effect of the simian virus 40 72-base-pair repeat. Proc. Natl Acad. Sci. USA 80, 721–725 (1983).

    Article  CAS  Google Scholar 

  49. Smith, R. P. et al. Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Nat. Genet. 45, 1021–1028 (2013).

    Article  CAS  Google Scholar 

  50. Busskamp, V. et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413–417 (2010).

    Article  CAS  Google Scholar 

  51. Zhang, H. et al. Identification and light-dependent translocation of a cone-specific antigen, cone arrestin, recognized by monoclonal antibody 7G6. Invest. Ophthalmol. Vis. Sci. 44, 2858–2867 (2003).

    Article  Google Scholar 

  52. Yonehara, K. et al. The first stage of cardinal direction selectivity is localized to the dendrites of retinal GCs. Neuron 79, 1078–1085 (2013).

    Article  CAS  Google Scholar 

  53. Reiff, D. F., Plett, J., Mank, M., Griesbeck, O. & Borst, A. Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila. Nat. Neurosci. 13, 973–978 (2010).

    Article  CAS  Google Scholar 

  54. Drinnenberg, A. et al. How diverse retinal functions arise from feedback at the first visual synapse. Neuron 99, 117–134.e11 (2018).

    Article  CAS  Google Scholar 

  55. Wertz, A. et al. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349, 70–74 (2015).

    Article  CAS  Google Scholar 

  56. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  Google Scholar 

  57. Strettoi, E., Novelli, E., Mazzoni, F., Barone, I. & Damiani, D. Complexity of retinal cone bipolar cells. Prog. Retin. Eye Res. 29, 272–283 (2010).

    Article  Google Scholar 

  58. Pérez de Sevilla Müller, L., Azar, S. S., de Los Santos, J. & Brecha, N. C. Prox1 is a marker for aII amacrine cells in the mouse retina. Front. Neuroanat. 11, 39 (2017).

    Article  Google Scholar 

  59. Snodderly, D. M., Sandstrom, M. M., Leung, I. Y.-F., Zucker, C. L. & Neuringer, M. Retinal pigment epithelial cell distribution in central retina of rhesus monkeys. Invest. Ophthalmol. Vis. Sci. 43, 2815–2818 (2002).

    PubMed  Google Scholar 

  60. Martin, P. R. & Grünert, U. Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina. J. Comp. Neurol. 323, 269–287 (1992).

    Article  CAS  Google Scholar 

  61. Wässle, H., Grünert, U., Röhrenbeck, J. & Boycott, B. B. Retinal GC density and cortical magnification factor in the primate. Vision Res. 30, 1897–1911 (1990).

    Article  Google Scholar 

  62. Kim, C. B. Y., Tom, B. W. & Spear, P. D. Effects of aging on the densities, numbers, and sizes of retinal GCs in rhesus monkey. Neurobiol. Aging 17, 431–438 (1996).

    Article  CAS  Google Scholar 

  63. Jonas, J. B., Schneider, U. & Naumann, G. O. Count and density of human retinal photoreceptors. Graefes Arch. Clin. Exp. Ophthalmol. 230, 505–510 (1992).

    Article  CAS  Google Scholar 

  64. Dreher, Z., Robinson, S. R. & Distler, C. Müller cells in vascular and avascular retinae: a survey of seven mammals. J. Comp. Neurol. 323, 59–80 (1992).

    Article  CAS  Google Scholar 

  65. Curcio, C. A. & Allen, K. A. Topography of GCs in human retina. J. Comp. Neurol. 300, 5–25 (1990).

    Article  CAS  Google Scholar 

  66. Kolb, H., Linberg, K. A. & Fisher, S. K. Neurons of the human retina: a Golgi study. J. Comp. Neurol. 318, 147–187 (1992).

    Article  CAS  Google Scholar 

  67. MacNeil, M. A., Heussy, J. K., Dacheux, R. F., Raviola, E. & Masland, R. H. The shapes and numbers of ACs: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J. Comp. Neurol. 413, 305–326 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following people: A.E. Kacso for the multielectrode array recording analyses; Z. Raics and D. Hillier for developing the recording software; N. Ledergerber for assistance in mouse breeding and maintenance; A. Drinnenberg for providing the AAV-ProA1-GCaMP6s confocal images; N. Gerber-Hollbach for help with the human eye donations; A. Police Reddy for assistance with cloning; X.W. Cheng for the eye injections; L. Vandenberghe for advice on small-scale virus preparation; D. Gaidatzis for support in ProB synthetic promoters design; T. Siegmann and R. Schmidt for creating the AAV database; C. Cepko, V. Gradinaru, E. Bamberg and K. Deisseroth for providing the plasmids; and W. Baehr for providing the anti-CAR antibody. We thank P. King, S. Oakeley and E. Macé for commenting on the manuscript. This work was supported by the Swiss National Science Foundation (grant no. CRS115_173728), the National Centre of Competence in Research (NCCR) ‘Molecular Systems Engineering’ (grant no. 51NF40-182895), a European Research Council Advanced Grant (funding under the European Union’s Horizon 2020 research and innovation program RETMUS grant no. 669157) and a Gebert-Rüf grant (grant no. GRS-039/12) to B.R.; the NCCR ‘Molecular Systems Engineering’ (grant no. 51NF40-182895), the Wellcome Trust (grant no. 210572/Z/18/Z) and the Foundation Fighting Blindness Clinical Research Institute (grant no. NNCC-CL-0816-0097-UBAS-NC) to H.P.N.S.; the National Natural Science Foundation of China (grant no. 81522014), National Key Research and Development Program of China (grant no. 2017YFA0105300) and Zhejiang Provincial Natural Science Foundation of China (grant no. LQ17H120005) to Z.-B.J. We also thank Lynn and Diana Lady Dougan for a personal donation to the Institute of Molecular and Clinical Ophthalmology.

Author information

Authors and Affiliations

Authors

Contributions

J.J., J.K. and B.R. designed and supervised the study. J.J., A.S., A.K., A.L., J.N., Z.Z.N., D.G. and H.P.N.S. optimized, performed and coordinated experiments on human retina culture. J.J., B.G.-S., C.P.P.-A., Ö.K. and R.I.H. performed experiments. R.K.M., S.B.R., P.H. and F.E. performed two-photon imaging or multielectrode array experiments. J.J., T.S., C.S.C., T.A., K.-C.W., R.-H.W. L.X., X.-L.F., Z.-B.J. and P.W.H. coordinated and performed experiments on NHPs. A.B. performed statistical analyses. D.H., A.R.K. and D.S. contributed to the synthetic promoter design. J.J., A.B., J.K. and B.R. wrote the paper.

Corresponding authors

Correspondence to Jacek Krol or Botond Roska.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Peer review information: Nature Neuroscience thanks Liqun Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Integrated supplementary information

Supplementary Figure 1 AAV-mediated sparse cell-type targeting in mouse retina.

(a) Confocal images of AAV-infected retinas. Left, CatCh-GFP (green); middle-left, immunostaining with marker (magenta) indicated above; middle-right, CatCh-GFP and marker; right, CatCh-GFP and marker and nuclear stain (Höchst, white). (b) Left, confocal images of AAV-infected retinas (top view), CatCh-GFP (black). Middle, quantification of CatCh-GFP+ cell density as a percentage of target cell-type or cell-class density, values are means ± SEM from n = 12 confocal images. Right, quantification of AAV-targeting specificity shown as a percentage of the major (black) and minor (grey) cell types among cells expressing the transgene.

Supplementary Figure 2 AAV-mediated GCaMP6s or CatCh-GFP expression in wild-type or rd1 retinas.

Confocal images of AAV-infected retinas. Left, GCaMP6s or CatCh-GFP (green); middle-left, immunostaining with marker (magenta) indicated above; middle-right, GCaMP6s or CatCh-GFP and marker; right, GCaMP6s or CatCh-GFP and marker and nuclear stain (Höchst, white). Images show representative reproducible results from n = 3 independent experiments.

Supplementary Figure 3 AAV-mediated cell-type targeting in NHP retina.

(a) Confocal images of AAV-infected retinas (top view). Left, GFP or CatCh-GFP (green); middle, immunostaining with marker (magenta) indicated above or nuclear stain (Höchst, white); right, GFP or CatCh-GFP and marker or nuclear stain. Images show representative reproducible results from n = 2 independent experiments. (b) Quantification of the dendritic field diameter of cells targeted by AAV-ProB15 and AAV-ProA5 with means (red line) indicated. (c) Left, quantification of CatCh-GFP+ cell density as a percentage of target cell-type or cell-class density, values are means ± SEM from n = 10 confocal images. Right, quantification of AAV-targeting specificity shown as a percentage of the major (black) and minor (grey) cell types among cells expressing the transgene. Viral titer values are shown as genome copies per ml.

Supplementary Figure 4 AAV-mediated cell-type targeting in human retina.

Confocal images of AAV-infected retinas (top view). Left, GFP or CatCh-GFP (green); middle, immunostaining with marker (magenta) indicated above; right, GFP or CatCh-GFP and marker. Images show representative reproducible results from n = 2 independent experiments.

Supplementary information

Supplementary Figs. 1–4 and Supplementary Table Notes.

Reporting Summary

Supplementary Table 1

AAVs targeting mouse retinal cells.

Supplementary Table 2

AAVs targeting non-human primate retinal cells.

Supplementary Table 3

AAVs targeting human retinal cells.

Supplementary Table 4

Metric of AAV activity and specificity across species.

Supplementary Table 5

AAVs with retained selectivity in targeting at least one retinal cell class across species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jüttner, J., Szabo, A., Gross-Scherf, B. et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat Neurosci 22, 1345–1356 (2019). https://doi.org/10.1038/s41593-019-0431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0431-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research