Review Article | Published:

Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation

Nature Neurosciencevolume 21pages903919 (2018) | Download Citation


New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (electroencephalograms, magnetoencephalograms, electrocorticograms and local field potentials) can be analyzed to identify large-scale brain dynamics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide recommendations for interpreting the data using forward and inverse models. The forward model describes how field potentials are generated by the activity of populations of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complexity of the underlying brain systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Leung, L.-W.S. Field potentials in the central nervous system recording, analysis, and modeling. in Neuromethods, Vol. 15: Neurophysiological Techniques: Applications to Neural Systems (eds. Boulton, A. et al.) 277–312 (Humana, New York, 1990).

  2. 2.

    Nicholson, C. & Freeman, J. A. Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J. Neurophysiol. 38, 356–368 (1975).

  3. 3.

    Gratiy, S. L. et al. From Maxwell’s equations to the theory of current-source density analysis. Eur. J. Neurosci. 45, 1013–1023 (2017).

  4. 4.

    Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

  5. 5.

    Einevoll, G. T., Kayser, C., Logothetis, N. K. & Panzeri, S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14, 770–785 (2013).

  6. 6.

    Nunez, P. & Srinivasan, R. Electric Fields in the Brain: The Neurophysics of EEG (Oxford Univ. Press, Oxford, 2006).

  7. 7.

    Hämäläinen, M. S. Magnetoencephalography: a tool for functional brain imaging. Brain Topogr. 5, 95–102 (1992).

  8. 8.

    Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

  9. 9.

    Siegel, M., Donner, T. H. & Engel, A. K. Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134 (2012).

  10. 10.

    Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993).

  11. 11.

    Nunez, P. L. Neocortical dynamics of macroscopic-scale EEG measurements. IEEE Eng. Med. Biol. Mag. 17, 110–117 (1998).

  12. 12.

    Lindén, H. et al. LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front. Neuroinform. 7, 41 (2014).

  13. 13.

    Gilja, V. & Moore, T. Electrical signals propagate unbiased in cortex. Neuron 55, 684–686 (2007).

  14. 14.

    Bédard, C., Kröger, H. & Destexhe, A. Model of low-pass filtering of local field potentials in brain tissue. Phys. Rev. E 73, 051911 (2006).

  15. 15.

    Miller, K. J., Sorensen, L. B., Ojemann, J. G. & den Nijs, M. Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 5, e1000609 (2009).

  16. 16.

    Pettersen, K. H., Lindén, H., Tetzlaff, T. & Einevoll, G. T. Power laws from linear neuronal cable theory: power spectral densities of the soma potential, soma membrane current and single-neuron contribution to the EEG. PLoS Comput. Biol. 10, e1003928 (2014).

  17. 17.

    Ranck, J. B. Jr. Specific impedance of rabbit cerebral cortex. Exp. Neurol. 7, 144–152 (1963).

  18. 18.

    Pfurtscheller, G. & Cooper, R. Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalogr. Clin. Neurophysiol. 38, 93–96 (1975).

  19. 19.

    Gabriel, S., Lau, R. W. & Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251–2269 (1996).

  20. 20.

    Bédard, C. & Destexhe, A. Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophys. J. 96, 2589–2603 (2009).

  21. 21.

    Logothetis, N. K., Kayser, C. & Oeltermann, A. In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55, 809–823 (2007).

  22. 22.

    Wagner, T. et al. Impact of brain tissue filtering on neurostimulation fields: a modeling study. Neuroimage 85, 1048–1057 (2014).

  23. 23.

    Dowrick, T., Blochet, C. & Holder, D. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography. Physiol. Meas. 36, 1273–1282 (2015).

  24. 24.

    Elbohouty, M., Wilson, M. T., Voss, L. J., Steyn-Ross, D. A. & Hunt, L. A. In vitro electrical conductivity of seizing and non-seizing mouse brain slices at 10 kHz. Phys. Med. Biol. 58, 3599–3613 (2013).

  25. 25.

    Miceli, S., Ness, T. V, Einevoll, G. T. & Schubert, D. Impedance spectrum in cortical tissue: implications for propagation of LFP signals on the microscopic level. eNeuro 4, ENEURO.0291-16.2016 (2017).

  26. 26.

    Reimann, M. W. et al. A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79, 375–390 (2013).

  27. 27.

    Schomburg, E. W., Anastassiou, C. A., Buzsáki, G. & Koch, C. The spiking component of oscillatory extracellular potentials in the rat hippocampus. J. Neurosci. 32, 11798–11811 (2012).

  28. 28.

    Scheffer-Teixeira, R., Belchior, H., Leão, R. N., Ribeiro, S. & Tort, A. B. L. On high-frequency field oscillations (100 Hz) and the spectral leakage of spiking activity. J. Neurosci. 33, 1535–1539 (2013).

  29. 29.

    Ray, S. & Maunsell, J. H. R. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).

  30. 30.

    Waldert, S., Lemon, R. N. & Kraskov, A. Influence of spiking activity on cortical local field potentials. J. Physiol. (Lond.) 591, 5291–5303 (2013).

  31. 31.

    Cuffin, B. N. et al. Tests of EEG localization accuracy using implanted sources in the human brain. Ann. Neurol. 29, 132–138 (1991).

  32. 32.

    Van Veen, B. D., van Drongelen, W., Yuchtman, M. & Suzuki, A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880 (1997).

  33. 33.

    Hipp, J. F., Engel, A. K. & Siegel, M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69, 387–396 (2011).

  34. 34.

    Hari, R. & Forss, N. Magnetoencephalography in the study of human somatosensory cortical processing. Phil. Trans. R. Soc. Lond. B 354, 1145–1154 (1999).

  35. 35.

    Hipp, J. F. & Siegel, M. Dissociating neuronal gamma-band activity from cranial and ocular muscle activity in EEG. Front. Hum. Neurosci. 7, 338 (2013).

  36. 36.

    Krings, T., Chiappa, K. H., Cuffin, B. N., Buchbinder, B. R. & Cosgrove, G. R. Accuracy of electroencephalographic dipole localization of epileptiform activities associated with focal brain lesions. Ann. Neurol. 44, 76–86 (1998).

  37. 37.

    Riera, J. J. et al. Pitfalls in the dipolar model for the neocortical EEG sources. J. Neurophysiol. 108, 956–975 (2012).

  38. 38.

    Barth, D. S. Empirical comparison of the MEG and EEG: animal models of the direct cortical response and epileptiform activity in neocortex. Brain Topogr. 4, 85–93 (1991).

  39. 39.

    Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P. & Andersen, R. A. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5, 805–811 (2002).

  40. 40.

    Bansal, A.K., Truccolo, W., Vargas-Irwin, C.E. & Donoghue, J.P. Decoding 3-D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity and local field potentials. J. Neurophysiol. (2011).

  41. 41.

    Katzner, S. et al. Local origin of field potentials in visual cortex. Neuron 61, 35–41 (2009).

  42. 42.

    Siegel, M. & König, P. A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats. J. Neurosci. 23, 4251–4260 (2003).

  43. 43.

    Boes, A. D. et al. Network localization of neurological symptoms from focal brain lesions. Brain 138, 3061–3075 (2015).

  44. 44.

    Liu, J. & Newsome, W. T. Local field potential in cortical area MT: stimulus tuning and behavioral correlations. J. Neurosci. 26, 7779–7790 (2006).

  45. 45.

    Berens, P., Keliris, G. A., Ecker, A. S., Logothetis, N. K. & Tolias, A. S. Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex. Front. Neurosci. 2, 199–207 (2008).

  46. 46.

    Pistohl, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C. & Ball, T. Decoding natural grasp types from human ECoG. Neuroimage 59, 248–260 (2012).

  47. 47.

    Cogan, G. B. et al. Sensory-motor transformations for speech occur bilaterally. Nature 507, 94–98 (2014).

  48. 48.

    Pesaran, B., Musallam, S. & Andersen, R. A. Cognitive neural prosthetics. Curr. Biol. 16, R77–R80 (2006).

  49. 49.

    Samaha, J., Sprague, T. C. & Postle, B. R. Decoding and reconstructing the focus of spatial attention from the topography of alpha-band oscillations. J. Cogn. Neurosci. 28, 1090–1097 (2016).

  50. 50.

    Cichy, R. M., Pantazis, D. & Oliva, A. Resolving human object recognition in space and time. Nat. Neurosci. 17, 455–462 (2014).

  51. 51.

    Carlson, T., Tovar, D. A., Alink, A. & Kriegeskorte, N. Representational dynamics of object vision: the first 1000 ms. J. Vis. 13, 1 (2013).

  52. 52.

    Myers, N. E. et al. Testing sensory evidence against mnemonic templates. Elife 4, e09000 (2015).

  53. 53.

    Srinivasan, R., Nunez, P. L. & Silberstein, R. B. Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Trans. Biomed. Eng. 45, 814–826 (1998).

  54. 54.

    Rickert, J. et al. Encoding of movement direction in different frequency ranges of motor cortical local field potentials. J. Neurosci. 25, 8815–8824 (2005).

  55. 55.

    Gunduz, A. et al. Decoding covert spatial attention using electrocorticographic (ECoG) signals in humans. Neuroimage 60, 2285–2293 (2012).

  56. 56.

    Brillinger, D.R. Time Series (Society for Industrial and Applied Mathematics, Philadelphia, 2001).

  57. 57.

    Pesaran, B. Spectral analysis for neural signals. in Neural Signal Processing: Quantitative Analysis of Neural Activity (ed. Mitra, P. P.) 1–13 (Society for Neuroscience, Washington, DC, 2008).

  58. 58.

    Halliday, D. M. et al. A framework for the analysis of mixed time series/point process data–theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog. Biophys. Mol. Biol. 64, 237–278 (1995).

  59. 59.

    Aru, J. et al. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015).

  60. 60.

    Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001).

  61. 61.

    McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).

  62. 62.

    Destexhe, A., Rudolph, M. & Paré, D. The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4, 739–751 (2003).

  63. 63.

    van Wingerden, M. et al. NMDA receptors control cue-outcome selectivity and plasticity of orbitofrontal firing patterns during associative stimulus-reward learning. Neuron 76, 813–825 (2012).

  64. 64.

    Burns, S. P., Xing, D., Shelley, M. J. & Shapley, R. M. Searching for autocoherence in the cortical network with a time-frequency analysis of the local field potential. J. Neurosci. 30, 4033–4047 (2010).

  65. 65.

    Burns, S. P., Xing, D. & Shapley, R. M. Is gamma-band activity in the local field potential of V1 cortex a “clock” or filtered noise? J. Neurosci. 31, 9658–9664 (2011).

  66. 66.

    Rule, M. E., Vargas-Irwin, C. E., Donoghue, J. P. & Truccolo, W. Dissociation between sustained single-neuron spiking and transient β-LFP oscillations in primate motor cortex. J. Neurophysiol. 117, 1524–1543 (2017).

  67. 67.

    Feingold, J., Gibson, D. J., DePasquale, B. & Graybiel, A. M. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc. Natl. Acad. Sci. USA 112, 13687–13692 (2015).

  68. 68.

    Zeitler, M., Fries, P. & Gielen, S. Assessing neuronal coherence with single-unit, multi-unit, and local field potentials. Neural Comput. 18, 2256–2281 (2006).

  69. 69.

    Wong, Y. T., Fabiszak, M. M., Novikov, Y., Daw, N. D. & Pesaran, B. Coherent neuronal ensembles are rapidly recruited when making a look-reach decision. Nat. Neurosci. 19, 327–334 (2016).

  70. 70.

    Ylinen, A. et al. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5, 78–90 (1995).

  71. 71.

    Mitzdorf, U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65, 37–100 (1985).

  72. 72.

    Maris, E., Schoffelen, J.-M. & Fries, P. Nonparametric statistical testing of coherence differences. J. Neurosci. Methods 163, 161–175 (2007).

  73. 73.

    Vinck, M., van Wingerden, M., Womelsdorf, T., Fries, P. & Pennartz, C. M. A. The pairwise phase consistency: a bias-free measure of rhythmic neuronal synchronization. Neuroimage 51, 112–122 (2010).

  74. 74.

    Granger, C. W. J. & Newbold, P. Spurious regressions in econometrics. J. Econom. 2, 111–120 (1974).

  75. 75.

    Jarvis, M. R. & Mitra, P. P. Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput. 13, 717–749 (2001).

  76. 76.

    Vinck, M., Womelsdorf, T., Buffalo, E. A., Desimone, R. & Fries, P. Attentional modulation of cell-class-specific gamma-band synchronization in awake monkey area V4. Neuron 80, 1077–1089 (2013).

  77. 77.

    Maris, E., Womelsdorf, T., Desimone, R. & Fries, P. Rhythmic neuronal synchronization in visual cortex entails spatial phase relation diversity that is modulated by stimulation and attention. Neuroimage 74, 99–116 (2013).

  78. 78.

    Brunet, N. M. et al. Stimulus repetition modulates gamma-band synchronization in primate visual cortex. Proc. Natl. Acad. Sci. USA 111, 3626–3631 (2014).

  79. 79.

    Zanos, T. P., Mineault, P. J. & Pack, C. C. Removal of spurious correlations between spikes and local field potentials. J. Neurophysiol. 105, 474–486 (2011).

  80. 80.

    Lepage, K. Q., Kramer, M. A. & Eden, U. T. The dependence of spike field coherence on expected intensity. Neural Comput. 23, 2209–2241 (2011).

  81. 81.

    Ogata, Y. On Lewis’ simulation method for point processes. IEEE Trans. Inf. Theory 27, 23–31 (1981).

  82. 82.

    Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P. & Brown, E. N. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol. 93, 1074–1089 (2005).

  83. 83.

    Lepage, K. Q. et al. A procedure for testing across-condition rhythmic spike-field association change. J. Neurosci. Methods 213, 43–62 (2013).

  84. 84.

    Rule, M. E., Vargas-Irwin, C., Donoghue, J. P. & Truccolo, W. Contribution of LFP dynamics to single-neuron spiking variability in motor cortex during movement execution. Front. Syst. Neurosci. 9, 89 (2015).

  85. 85.

    Vinck, M., Battaglia, F. P., Womelsdorf, T. & Pennartz, C. Improved measures of phase-coupling between spikes and the local field potential. J. Comput. Neurosci. 33, 53–75 (2012).

  86. 86.

    Sirota, A. et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60, 683–697 (2008).

  87. 87.

    Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86, 740–754 (2015).

  88. 88.

    Nolte, G. et al. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115, 2292–2307 (2004).

  89. 89.

    Stam, C. J., Nolte, G. & Daffertshofer, A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28, 1178–1193 (2007).

  90. 90.

    Vinck, M., Oostenveld, R., van Wingerden, M., Battaglia, F. & Pennartz, C. M. A. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55, 1548–1565 (2011).

  91. 91.

    Schoffelen, J.-M. & Gross, J. Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30, 1857–1865 (2009).

  92. 92.

    Schoffelen, J.-M., Oostenveld, R. & Fries, P. Imaging the human motor system’s beta-band synchronization during isometric contraction. Neuroimage 41, 437–447 (2008).

  93. 93.

    Kamiński, M., Ding, M., Truccolo, W. A. & Bressler, S. L. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85, 145–157 (2001).

  94. 94.

    Brovelli, A. et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc. Natl. Acad. Sci. USA 101, 9849–9854 (2004).

  95. 95.

    Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969).

  96. 96.

    Wiener, N. The Theory of Prediction. Modern Mathematics for Engineers Vol. 58 (McGraw-Hill, New York, 1956).

  97. 97.

    Geweke, J. Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 77, 304–313 (1982).

  98. 98.

    Barnett, L. & Seth, A. K. The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J. Neurosci. Methods 223, 50–68 (2014).

  99. 99.

    Friston, K. J. et al. Granger causality revisited. Neuroimage 101, 796–808 (2014).

  100. 100.

    Dhamala, M., Rangarajan, G. & Ding, M. Analyzing information flow in brain networks with nonparametric Granger causality. Neuroimage 41, 354–362 (2008).

  101. 101.

    Banerjee, A., Dean, H. L. & Pesaran, B. Parametric models to relate spike train and LFP dynamics with neural information processing. Front. Comput. Neurosci. 6, 51 (2012).

  102. 102.

    Truccolo, W. A., Ding, M., Knuth, K. H., Nakamura, R. & Bressler, S. L. Trial-to-trial variability of cortical evoked responses: implications for the analysis of functional connectivity. Clin. Neurophysiol. 113, 206–226 (2002).

  103. 103.

    Truccolo, W. et al. Estimation of single-trial multicomponent ERPs: differentially variable component analysis (dVCA). Biol. Cybern. 89, 426–438 (2003).

  104. 104.

    Knuth, K. H. et al. Differentially variable component analysis: identifying multiple evoked components using trial-to-trial variability. J. Neurophysiol. 95, 3257–3276 (2006).

  105. 105.

    Wang, X., Chen, Y. & Ding, M. Estimating Granger causality after stimulus onset: a cautionary note. Neuroimage 41, 767–776 (2008).

  106. 106.

    Xu, L. et al. ASEO: a method for the simultaneous estimation of single-trial event-related potentials and ongoing brain activities. IEEE Trans. Biomed. Eng. 56, 111–121 (2009).

  107. 107.

    McIntyre, C. C. & Grill, W. M. Selective microstimulation of central nervous system neurons. Ann. Biomed. Eng. 28, 219–233 (2000).

  108. 108.

    Buzsáki, G. et al. Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 86, 92–105 (2015).

  109. 109.

    Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C. & Winter, A. L. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203, 380–384 (1964).

  110. 110.

    Salazar, R. F. et al. Content-specific fronto-parietal synchronization during visual working memory. Science 338, 1097–1100 (2012).

  111. 111.

    Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

  112. 112.

    Jensen, O. & Lisman, J. E. Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. J. Neurophysiol. 83, 2602–2609 (2000).

  113. 113.

    Agarwal, G. et al. Spatially distributed local fields in the hippocampus encode rat position. Science. 344, 626–630 (2014).

  114. 114.

    Siegel, M., Warden, M. R. & Miller, E. K. Phase-dependent neuronal coding of objects in short-term memory. Proc. Natl. Acad. Sci. USA 106, 21341–21346 (2009).

  115. 115.

    Dean, H. L., Hagan, M. A. & Pesaran, B. Only coherent spiking in posterior parietal cortex coordinates looking and reaching. Neuron 73, 829–841 (2012).

  116. 116.

    Pesaran, B., Nelson, M. J. & Andersen, R. A. Free choice activates a decision circuit between frontal and parietal cortex. Nature 453, 406–409 (2008).

  117. 117.

    Hawellek, D. J., Wong, Y. T. & Pesaran, B. Temporal coding of reward-guided choice in the posterior parietal cortex. Proc. Natl. Acad. Sci. USA 113, 13492–13497 (2016).

  118. 118.

    Vinck, M. et al. Gamma-phase shifting in awake monkey visual cortex. J. Neurosci. 30, 1250–1257 (2010).

  119. 119.

    Hastie, T., Tibshirani, R. J. & Friedman, J. Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer, Berlin, 2009).

  120. 120.

    Markowitz, D. A., Wong, Y. T., Gray, C. M. & Pesaran, B. Optimizing the decoding of movement goals from local field potentials in macaque cortex. J. Neurosci. 31, 18412–18422 (2011).

  121. 121.

    Bosman, C. A. et al. Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75, 875–888 (2012).

  122. 122.

    Womelsdorf, T., Fries, P., Mitra, P. P. & Desimone, R. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439, 733–736 (2006).

  123. 123.

    Richter, C. G., Thompson, W. H., Bosman, C. A. & Fries, P. A jackknife approach to quantifying single-trial correlation between covariance-based metrics undefined on a single-trial basis. Neuroimage 114, 57–70 (2015).

  124. 124.

    Fröhlich, F. & McCormick, D. A. Endogenous electric fields may guide neocortical network activity. Neuron 67, 129–143 (2010).

  125. 125.

    Anastassiou, C. A. & Koch, C. Ephaptic coupling to endogenous electric field activity: why bother? Curr. Opin. Neurobiol. 31, 95–103 (2015).

  126. 126.

    Cannon, J. et al. Neurosystems: brain rhythms and cognitive processing. Eur. J. Neurosci. 39, 705–719 (2014).

  127. 127.

    Besserve, M., Lowe, S. C., Logothetis, N. K., Schölkopf, B. & Panzeri, S. Shifts of gamma phase across primary visual cortical sites reflect dynamic stimulus-modulated information transfer. PLoS Biol. 13, e1002257 (2015).

  128. 128.

    Katz, L. N., Yates, J. L., Pillow, J. W. & Huk, A. C. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature 535, 285–288 (2016).

  129. 129.

    Pesaran, B. & Freedman, D. J. Where are perceptual decisions made in the brain? Trends Neurosci. 39, 642–644 (2016).

  130. 130.

    Pettersen, K. H., Hagen, E. & Einevoll, G. T. Estimation of population firing rates and current source densities from laminar electrode recordings. J. Comput. Neurosci. 24, 291–313 (2008).

  131. 131.

    Głąbska, H. T. et al. Generalized laminar population analysis (gLPA) for interpretation of multielectrode data from cortex. Front. Neuroinform. 10, 1 (2016).

  132. 132.

    Tian, L., Akerboom, J., Schreiter, E. R. & Looger, L. L. Neural activity imaging with genetically encoded calcium indicators. Prog. Brain Res 196, 79–94 (2012).

  133. 133.

    Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).

  134. 134.

    Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

  135. 135.

    Chao, Z. C., Nagasaka, Y. & Fujii, N. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Front. Neuroeng. 3, 3 (2010).

  136. 136.

    Insanally, M. et al. A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents. J. Neural Eng. 13, 026030–26030 (2016).

  137. 137.

    Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

  138. 138.

    Shepherd, G. M. G., Stepanyants, A., Bureau, I., Chklovskii, D. & Svoboda, K. Geometric and functional organization of cortical circuits. Nat. Neurosci. 8, 782–790 (2005).

  139. 139.

    Lindén, H., Pettersen, K. H. & Einevoll, G. T. Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J. Comput. Neurosci. 29, 423–444 (2010).

  140. 140.

    Ness, T. V., Remme, M. W. H. & Einevoll, G. T. Active subthreshold dendritic conductances shape the local field potential. J. Physiol. (Lond.) 594, 3809–3825 (2016).

  141. 141.

    Kajikawa, Y. & Schroeder, C. E. How local is the local field potential? Neuron 72, 847–858 (2011).

  142. 142.

    Nicholson, C. & Llinás, R. Real time current source-density analysis using multi-electrode array in cat cerebellum. Brain Res. 100, 418–424 (1975).

  143. 143.

    Pettersen, K. H., Devor, A., Ulbert, I., Dale, A. M. & Einevoll, G. T. Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities. J. Neurosci. Methods 154, 116–133 (2006).

  144. 144.

    Potworowski, J., Jakuczun, W., Lȩski, S. & Wójcik, D. Kernel current source density method. Neural Comput. 24, 541–575 (2012).

  145. 145.

    Pettersen, K.H., Lindén, H., Dale, A.M. & Einevoll, G.T. Extracellular spikes and CSD. in Handbook of Neural Activity Measurement (eds. Brette, R. & Destexhe, A.) 92–135, (Cambridge Univ. Press, Cambridge, 2012).

  146. 146.

    Mazzoni, A. et al. Computing the local field potential (LFP) from integrate-and-fire network models. PLoS Comput. Biol. 11, e1004584 (2015).

  147. 147.

    Castelo-Branco, M., Neuenschwander, S. & Singer, W. Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J. Neurosci. 18, 6395–6410 (1998).

  148. 148.

    Minlebaev, M., Colonnese, M., Tsintsadze, T., Sirota, A. & Khazipov, R. Early γ oscillations synchronize developing thalamus and cortex. Science 334, 226–229 (2011).

  149. 149.

    Swadlow, H. A. & Gusev, A. G. The influence of single VB thalamocortical impulses on barrel columns of rabbit somatosensory cortex. J. Neurophysiol. 83, 2802–2813 (2000).

  150. 150.

    Rall, W. & Shepherd, G. M. Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol. 31, 884–915 (1968).

  151. 151.

    Holt, G. R. & Koch, C. Electrical interactions via the extracellular potential near cell bodies. J. Comput. Neurosci 6, 169–184 (1999).

  152. 152.

    Tuckwell, H. C. Introduction to Theoretical Neurobiology: Volume 1, Linear Cable Theory and Dendritic Structure (Cambridge Univ. Press, Cambridge, 1988).

  153. 153.

    Halnes, G. et al. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue. PLoS Comput. Biol. 12, e1005193 (2016).

  154. 154.

    Lorente de No, R. Analysis of the distribution of the action currents of nerve in volume conductors. Stud. Rockefeller Inst. Med. Res. Repr 132, 384–477 (1947).

  155. 155.

    Łęski, S., Lindén, H., Tetzlaff, T., Pettersen, K. H. & Einevoll, G. T. Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput. Biol. 9, e1003137 (2013).

  156. 156.

    Lindén, H. et al. Modeling the spatial reach of the LFP. Neuron 72, 859–872 (2011).

  157. 157.

    Tenke, C. E., Schroeder, C. E., Arezzo, J. C. & Vaughan, H. G. Jr. Interpretation of high-resolution current source density profiles: a simulation of sublaminar contributions to the visual evoked potential. Exp. Brain Res. 94, 183–192 (1993).

  158. 158.

    Fernández-Ruiz, A. et al. Cytoarchitectonic and dynamic origins of giant positive local field potentials in the dentate gyrus. J. Neurosci. 33, 15518–15532 (2013).

  159. 159.

    Haider, B., Schulz, D. P. A., Häusser, M. & Carandini, M. Millisecond coupling of local field potentials to synaptic currents in the awake visual cortex. Neuron 90, 35–42 (2016).

  160. 160.

    Okun, M., Naim, A. & Lampl, I. The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J. Neurosci. 30, 4440–4448 (2010).

  161. 161.

    Głąbska, H., Potworowski, J., Łęski, S. & Wójcik, D. K. Independent components of neural activity carry information on individual populations. PLoS One 9, e105071 (2014).

  162. 162.

    Saleem, A. B. et al. Subcortical source and modulation of the narrowband gamma oscillation in mouse visual cortex. Neuron 93, 315–322 (2017).

  163. 163.

    Welle, C. G. & Contreras, D. Sensory-driven and spontaneous gamma oscillations engage distinct cortical circuitry. J. Neurophysiol. 115, 1821–1835 (2016).

  164. 164.

    Bastos, A. M., Briggs, F., Alitto, H. J., Mangun, G. R. & Usrey, W. M. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations. J. Neurosci. 34, 7639–7644 (2014).

  165. 165.

    Livingstone, M. S. Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. J. Neurophysiol. 75, 2467–2485 (1996).

  166. 166.

    Swadlow, H. A., Gusev, A. G. & Bezdudnaya, T. Activation of a cortical column by a thalamocortical impulse. J. Neurosci. 22, 7766–7773 (2002).

  167. 167.

    Steriade, M., Contreras, D., Amzica, F. & Timofeev, I. Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J. Neurosci. 16, 2788–2808 (1996).

  168. 168.

    Schomburg, E. W. et al. Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron 84, 470–485 (2014).

  169. 169.

    Buzsáki, G. & Schomburg, E. W. What does gamma coherence tell us about inter-regional neural communication? Nat. Neurosci. 18, 484–489 (2015).

Download references


C.S. acknowledges Y. Kajikawa for contributing figure 4b and for editorial comments. C.S. acknowledges grant support from MH111439 and DC015780. G.E. acknowledges grant support from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 720270 (Human Brain Project SGA1). P.F. acknowledges grant support from DFG (SPP 1665, FOR 1847, FR2557/5-1-CORNET), the European Union (FP7-600730-Magnetrodes), NIH (1U54MH091657-WU-Minn-Consortium-HCP), and LOEWE (NeFF). W.T. acknowledges grant support from NIH-NINDS R01NS079533, U.S. Department of Veterans Affairs, Merit Review Award RX000668, and the Pablo J. Salame ’88 Goldman Sachs endowed Assistant Professorship of Computational Neuroscience. B.P. acknowledges grant support from NEI R01-EY024067, NINDS R01-NS104923, ARO MURI 68984-CS-MUR, NSF BCS 150236, and DoD contracts W911NF- 14-2-0043 and N66001-17-C-4002. A.S. acknowledges grant support from BrainCom from EU Horizon 2020 program via grant no. 732032, Munich Cluster for Systems Neurology (SyNergy, EXC 1010), Deutsche Forschungsgemeinschaft Priority Program 1665 and 1392 and Bundesministerium für Bildung und Forschung via grant no. 01GQ0440 (Bernstein Centre for Computational Neuroscience Munich).

Author information


  1. Center for Neural Science, New York University, New York, NY, USA

    • Bijan Pesaran
  2. NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA

    • Bijan Pesaran
  3. Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany

    • Martin Vinck
    •  & Pascal Fries
  4. Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway

    • Gaute T. Einevoll
  5. Department of Physics, University of Oslo, Oslo, Norway

    • Gaute T. Einevoll
  6. Bernstein Center for Computational Neuroscience Munich, Munich Cluster of Systems Neurology (SyNergy), Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany

    • Anton Sirota
  7. Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands

    • Pascal Fries
  8. Centre for Integrative Neuroscience & MEG Center, University of Tübingen, Tübingen, Germany

    • Markus Siegel
  9. Department of Neuroscience and Institute for Brain Science, Brown University, Providence, RI, USA

    • Wilson Truccolo
  10. Center for Neurorestoration and Neurotechnology, U.S. Department of Veterans Affairs, Providence, RI, USA

    • Wilson Truccolo
  11. Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA

    • Charles E. Schroeder
  12. Department of Neurosurgery, Columbia College of Physicians and Surgeons, New York, NY, USA

    • Charles E. Schroeder
  13. Department of Cognitive Sciences, Department of Biomedical Engineering, University of California, Irvine, CA, USA

    • Ramesh Srinivasan


  1. Search for Bijan Pesaran in:

  2. Search for Martin Vinck in:

  3. Search for Gaute T. Einevoll in:

  4. Search for Anton Sirota in:

  5. Search for Pascal Fries in:

  6. Search for Markus Siegel in:

  7. Search for Wilson Truccolo in:

  8. Search for Charles E. Schroeder in:

  9. Search for Ramesh Srinivasan in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Bijan Pesaran.

Supplementary information

About this article

Publication history