Brief Communication

Accumbal D2 cells orchestrate innate risk-avoidance according to orexin signals

Received:
Accepted:
Published online:

Abstract

Excitation of accumbal D2 cells governs vital actions, including avoidance of learned risks, but the origins of this excitation and roles of D2 cells in innate risk-avoidance are unclear. Hypothalamic neurons producing orexins (also called hypocretins) enhance innate risk-avoidance via poorly understood neurocircuits. We describe a direct orexin→D2 excitatory circuit and show that D2 cell activity is necessary for orexin-dependent innate risk-avoidance in mice, thus revealing an unsuspected hypothalamus–accumbens interplay in action selection.

  • Subscribe to Nature Neuroscience for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Sakurai, T. Nat. Rev. Neurosci. 15, 719–731 (2014).

  2. 2.

    Giardino, W. J. & de Lecea, L. Curr. Opin. Neurobiol. 29, 103–108 (2014).

  3. 3.

    González, J. A., Iordanidou, P., Strom, M., Adamantidis, A. & Burdakov, D. Nat. Commun. 7, 11395 (2016).

  4. 4.

    Peyron, C. et al. J. Neurosci. 18, 9996–10015 (1998).

  5. 5.

    Maner, J. K. & Schmidt, N. B. Behav. Ther. 37, 181–189 (2006).

  6. 6.

    Johnson, P. L. et al. Nat. Med. 16, 111–115 (2010).

  7. 7.

    Suzuki, M., Beuckmann, C. T., Shikata, K., Ogura, H. & Sawai, T. Brain Res. 1044, 116–121 (2005).

  8. 8.

    Bonnavion, P., Jackson, A. C., Carter, M. E. & de Lecea, L. Nat. Commun. 6, 6266 (2015).

  9. 9.

    Heydendael, W., Sengupta, A., Beck, S. & Bhatnagar, S. Physiol. Behav. 130, 182–190 (2014).

  10. 10.

    Zalocusky, K. A. et al. Nature 531, 642–646 (2016).

  11. 11.

    Nicola, S. M., Surmeier, J. & Malenka, R. C. Annu. Rev. Neurosci. 23, 185–215 (2000).

  12. 12.

    Kupchik, Y. M. et al. Nat. Neurosci. 18, 1230–1232 (2015).

  13. 13.

    Koós, T. & Tepper, J. M. Nat. Neurosci. 2, 467–472 (1999).

  14. 14.

    Harris, G. C., Wimmer, M. & Aston-Jones, G. Nature 437, 556–559 (2005).

  15. 15.

    Mahler, S. V., Moorman, D. E., Smith, R. J., James, M. H. & Aston-Jones, G. Nat. Neurosci. 17, 1298–1303 (2014).

  16. 16.

    Gangarossa, G. et al. Front. Neural Circuits 7, 22 (2013).

  17. 17.

    Mori, A., Shindou, T., Ichimura, M., Nonaka, H. & Kase, H. J. Neurosci. 16, 605–611 (1996).

  18. 18.

    Matsuki, T. et al. Proc. Natl. Acad. Sci. USA 106, 4459–4464 (2009).

  19. 19.

    Schöne, C. et al. J. Neurosci. 32, 12437–12443 (2012).

  20. 20.

    Apergis-Schoute, J. et al. J. Neurosci. 35, 5435–5441 (2015).

  21. 21.

    Planert, H., Berger, T. K. & Silberberg, G. PLoS One 8, e57054 (2013).

  22. 22.

    Gertler, T. S., Chan, C. S. & Surmeier, D. J. J. Neurosci. 28, 10814–10824 (2008).

  23. 23.

    Kawaguchi, Y. J. Neurosci. 13, 4908–4923 (1993).

  24. 24.

    Kawaguchi, Y., Wilson, C. J., Augood, S. J. & Emson, P. C. Trends Neurosci. 18, 527–535 (1995).

  25. 25.

    Saddoris, M. P., Cacciapaglia, F., Wightman, R. M. & Carelli, R. M. J. Neurosci. 35, 11572–11582 (2015).

  26. 26.

    Alderson, H. L., Parkinson, J. A., Robbins, T. W. & Everitt, B. J. Psychopharmacology (Berl.) 153, 455–463 (2001).

  27. 27.

    van der Plasse, G., Schrama, R., van Seters, S. P., Vanderschuren, L. J. & Westenberg, H. G. PLoS One 7, e33455 (2012).

  28. 28.

    Vélez-Fort, M. et al. Neuron 83, 1431–1443 (2014).

  29. 29.

    Wickersham, I. R. et al. Neuron 53, 639–647 (2007).

  30. 30.

    Wall, N. R., Wickersham, I. R., Cetin, A., De La Parra, M. & Callaway, E. M. Proc. Natl. Acad. Sci. USA 107, 21848–21853 (2010).

  31. 31.

    Schöne, C., Apergis-Schoute, J., Sakurai, T., Adamantidis, A. & Burdakov, D. Cell Rep. 7, 697–704 (2014).

  32. 32.

    Blomeley, C. P., Cains, S. & Bracci, E. Front. Cell. Neurosci. 9, 453 (2015).

  33. 33.

    Smart, D. et al. Br. J. Pharmacol. 132, 1179–1182 (2001).

  34. 34.

    Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Nature 450, 420–424 (2007).

  35. 35.

    Karnani, M. M. et al. Neuron 72, 616–629 (2011).

  36. 36.

    Prut, L. & Belzung, C. Eur. J. Pharmacol. 463, 3–33 (2003).

  37. 37.

    Walsh, R. N. & Cummins, R. A. Psychol. Bull. 83, 482–504 (1976).

  38. 38.

    Dent, C. L., Isles, A. R. & Humby, T. Eur. J. Neurosci. 39, 520–530 (2014).

  39. 39.

    Fendt, M., Endres, T., Lowry, C. A., Apfelbach, R. & McGregor, I. S. Neurosci. Biobehav. Rev. 29, 1145–1156 (2005).

  40. 40.

    Yang, H. et al. Nat. Neurosci. 19, 283–289 (2016).

  41. 41.

    Whiddon, B. B. & Palmiter, R. D. J. Neurosci. 33, 2009–2016 (2013).

  42. 42.

    González, J. A. et al. Curr. Biol. 26, 2486–2491 (2016).

Download references

Acknowledgements

This work was funded by The Francis Crick Institute, which receives its core funding from Cancer Research UK, the UK Medical Research Council and the Wellcome Trust.

Author information

Author notes

  1. Craig Blomeley and Celia Garau contributed equally to this work.

Affiliations

  1. The Francis Crick Institute, London, UK

    • Craig Blomeley
    • , Celia Garau
    •  & Denis Burdakov

Authors

  1. Search for Craig Blomeley in:

  2. Search for Celia Garau in:

  3. Search for Denis Burdakov in:

Contributions

C.B. and C.G. (equal contributors) designed and performed experiments and analyzed data; D.B. designed experiments, obtained funding and wrote the paper.

Competing interests

The authors have no competing interests.

Corresponding author

Correspondence to Denis Burdakov.

Integrated Supplementary Information

Supplementary information