Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultralong transients enhance sensitivity and resolution in Orbitrap-based single-ion mass spectrometry

Abstract

Orbitrap-based charge detection mass spectrometry utilizes single-molecule sensitivity to enable mass analysis of even highly heterogeneous, high-mass macromolecular assemblies. For contemporary Orbitrap instruments, the accessible ion detection (recording) times are maximally ~1–2 s. Here by modifying a data acquisition method on an Orbitrap ultrahigh mass range mass spectrometer, we trapped and monitored individual (single) ions for up to 25 s, resulting in a corresponding and huge improvement in signal-to-noise ratio (×5 compared with 1 s), mass resolution (×25) and accuracy in charge and mass determination of Orbitrap-based charge detection mass spectrometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recording ultralong transients on an Orbitrap analyzer.
Fig. 2: Ensemble versus single-ion native MS of apoferritin.

Similar content being viewed by others

Data availability

Raw transient data are publicly available on the MassIVE repository under accession code MSV000093797 (https://doi.org/10.25345/C5H41JZ1K). Source data are provided with this paper.

Code availability

A Python library, Jupyter notebook and representative dataset for processing of transient data are available as Supplementary Code.

References

  1. Mehmood, S., Allison, T. M. & Robinson, C. V. Mass spectrometry of protein complexes: from origins to applications. Annu. Rev. Phys. Chem. 66, 453–474 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Karch, K. R., Snyder, D. T., Harvey, S. R. & Wysocki, V. H. Native mass spectrometry: recent progress and remaining challenges. Annu. Rev. Biophys. 51, 157–179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tamara, S., den Boer, M. A. & Heck, A. J. R. High-resolution native mass spectrometry. Chem. Rev. 122, 7269–7326 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Keifer, D. Z., Pierson, E. E. & Jarrold, M. F. Charge detection mass spectrometry: weighing heavier things. Analyst 142, 1654–1671 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Harper, C. C., Elliott, A. G., Oltrogge, L. M., Savage, D. F. & Williams, E. R. Multiplexed charge detection mass spectrometry for high-throughput single ion analysis of large molecules. Anal. Chem. 91, 7458–7465 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Jarrold, M. F. Applications of charge detection mass spectrometry in molecular biology and biotechnology. Chem. Rev. 122, 7415–7441 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kafader, J. O. et al. Multiplexed mass spectrometry of individual ions improves measurement of proteoforms and their complexes. Nat. Methods 17, 391–394 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wörner, T. P. et al. Resolving heterogeneous macromolecular assemblies by Orbitrap-based single-particle charge detection mass spectrometry. Nat. Methods 17, 395–398 (2020).

    Article  PubMed  Google Scholar 

  10. Deslignière, E., Rolland, A., Ebberink, E. H. T. M., Yin, V. & Heck, A. J. R. Orbitrap-based mass and charge analysis of single molecules. Acc. Chem. Res. https://doi.org/10.1021/acs.accounts.3c00079 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. den Boer, M. A. et al. Comparative analysis of antibodies and heavily glycosylated macromolecular immune complexes by size-exclusion chromatography multi-angle light scattering, native charge detection mass spectrometry, and mass photometry. Anal. Chem. 94, 892–900 (2021).

    Article  Google Scholar 

  12. Wörner, T. P., Snijder, J., Friese, O., Powers, T. & Heck, A. J. R. Assessment of genome packaging in AAVs using Orbitrap-based charge-detection mass spectrometry. Mol. Ther. Methods Clin. Dev. 24, 40–47 (2022).

    Article  PubMed  Google Scholar 

  13. Ebberink, E., Ruisinger, A., Nuebel, M., Thomann, M. & Heck, A. J. R. Assessing production variability in empty and filled adeno-associated viruses by single molecule mass analyses. Mol. Ther. Methods Clin. Dev. 27, 491–501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kostelic, M. M. et al. Stability and dissociation of adeno-associated viral capsids by variable temperature-charge detection-mass spectrometry. Anal. Chem. 94, 11723–11727 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Wörner, T. P. et al. Frequency chasing of individual megadalton ions in an Orbitrap analyser improves precision of analysis in single-molecule mass spectrometry. Nat. Chem. 14, 515–522 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kafader, J. O. et al. STORI plots enable accurate tracking of individual ion signals. J. Am. Soc. Mass Spectrom. 30, 2200–2203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kostelic, M. M. et al. UniDecCD: deconvolution of charge detection-mass spectrometry data. Anal. Chem. 93, 14722–14729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keifer, D. Z., Shinholt, D. L. & Jarrold, M. F. Charge detection mass spectrometry with almost perfect charge accuracy. Anal. Chem. 87, 10330–10337 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Denisov, E., Damoc, E. & Makarov, A. Exploring frontiers of Orbitrap performance for long transients. Int. J. Mass Spectrom. 466, 116607 (2021).

    Article  CAS  Google Scholar 

  20. Hecht, E. S., Scigelova, M., Eliuk, S. & Makarov, A. Fundamentals and Advances of Orbitrap Mass Spectrometry (John Wiley & Sons, 2019).

  21. Smith, R. D. Large individual ion FTICR measurements from the mid-1990s using reactions for charge determination mass spectrometry. J. Am. Soc. Mass Spectrom. https://doi.org/10.1021/jasms.2c00329 (2023).

  22. Nagornov, K. O., Kozhinov, A. N., Gasilova, N., Menin, L. & Tsybin, Y. O. Characterization of the time-domain isotopic beat patterns of monoclonal antibodies in Fourier transform mass spectrometry. J. Am. Soc. Mass Spectrom. 33, 1113–1125 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Qi, Y. et al. Variation of the Fourier transform mass spectra phase function with experimental parameters. Anal. Chem. 83, 8477–8483 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Todd, A. R. & Jarrold, M. F. Dynamic calibration enables high-accuracy charge measurements on individual ions for charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 31, 1241–1248 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Elliott, A. G., Harper, C. C., Lin, H.-W. & Williams, E. R. Mass, mobility and MSn measurements of single ions using charge detection mass spectrometry. Analyst 142, 2760–2769 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Bills, J. R. et al. Improved uranium isotope ratio analysis in liquid sampling–atmospheric pressure glow discharge/Orbitrap FTMS coupling through the use of an external data acquisition system. J. Am. Soc. Mass Spectrom. 32, 1224–1236 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Nagornov, K. O. et al. Drug-to-antibody ratio estimation via proteoform peak integration in the analysis of antibody–oligonucleotide conjugates with orbitrap Fourier transform mass spectrometry. Anal. Chem. 93, 12930–12937 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Quaite-Randall, E. & Joachimiak, A. Purification of GroEL from an overproducing E. coli strain. Methods Mol. Biol. 140, 29–39 (2000).

    CAS  PubMed  Google Scholar 

  30. Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nagornov, K. O., Kozhinov, A. N., Gasilova, N., Menin, L. & Tsybin, Y. O. Transient-mediated simulations of FTMS isotopic distributions and mass spectra to guide experiment design and data analysis. J. Am. Soc. Mass Spectrom. 31, 1927–1942 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, R. D., Cheng, X., Brace, J. E., Hofstadler, S. A. & Anderson, G. A. Trapping, detection and reaction of very large single molecular ions by mass spectrometry. Nature 369, 137–139 (1994).

    Article  CAS  Google Scholar 

  33. Bruce, J. E. et al. Trapping, detection, and mass measurement of individual ions in a Fourier transform ion cyclotron resonance mass spectrometer. J. Am. Chem. Soc. 116, 7839–7847 (2002).

    Article  Google Scholar 

  34. Guan, S., Wahl, M. C. & Marshall, A. G. Elimination of frequency drift from Fourier transform ion cyclotron resonance mass spectra by digital quadrature heterodyning: ultrahigh mass resolving power for laser-desorbed molecules. Anal. Chem. 65, 3647–3653 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Netherlands Organization for Scientific Research (NWO) funding the Netherlands Proteomics Centre through the X-omics Road Map program (project 184.034.019). A.J.R.H. acknowledges further support by NWO through the Spinoza Award SPI.2017.028. A.D.R. acknowledges support by an EMBO long-term fellowship (ALTF_371-2022). Y.O.T. acknowledges support from the European Horizon 2020 research and innovation program under grant agreement #964553 (ARIADNE). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.D., V.C.Y., E.H.T.M.E. and A.D.R. contributed to preliminary experimental work on ultralong transients. E.D. and V.C.Y. performed the experiments shown in the manuscript. A.B. provided technical support for DAQ on the Booster and Orbitrap. T.P.W. wrote the scripts for ultralong transient analysis, with further modifications from V.C.Y., E.D. and E.H.T.M.E. E.D., V.C.Y. and E.H.T.M.E. processed the data. K.L.F. modified the UHMR Orbitrap software and developed the ion pulse scheme to enable the acquisition of ultralong transients. K.O.N., A.N.K. and Y.O.T. installed the Booster and helped for processing of Booster data. A.A.M. and K.L.F. advised on the operation of the Orbitrap system and mechanisms in the Orbitrap analyzer at longer transients. V.C.Y. and A.J.R.H. supervised the study. A.J.R.H. conceived the project and acquired funding. E.D., V.C.Y. and A.J.R.H. drafted the manuscript. All authors provided critical feedback on the manuscript.

Corresponding authors

Correspondence to Victor C. Yin or Albert J. R. Heck.

Ethics declarations

Competing interests

The authors declare the following financial interests that may be considered as potential competing interests: three authors (K.L.F., T.P.W. and A.A.M.) are employees of Thermo Fisher Scientific, the manufacturer of the Orbitrap mass spectrometer used in the study, and three authors (A.N.K., K.O.N. and Y.O.T.) are employees of Spectroswiss, the manufacturer of the FTMS Booster X2 used in the study. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Justin Benesch, Kallol Gupta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Arunima Singh, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Peer Review File

Supplementary Code

Python library, Jupyter notebook and representative dataset for ultralong transient processing.

Supplementary Data 1

Source data for Supplementary Figs. 1–10.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deslignière, E., Yin, V.C., Ebberink, E.H.T.M. et al. Ultralong transients enhance sensitivity and resolution in Orbitrap-based single-ion mass spectrometry. Nat Methods 21, 619–622 (2024). https://doi.org/10.1038/s41592-024-02207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-024-02207-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research