Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping enzyme activity in living systems by real-time mid-infrared photothermal imaging of nitrile chameleons

Abstract

Simultaneous spatial mapping of the activity of multiple enzymes in a living system can elucidate their functions in health and disease. However, methods based on monitoring fluorescent substrates are limited. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons, for the peak shift between substrate and product. To image these reporters in real time, we developed a laser-scanning mid-infrared photothermal imaging system capable of imaging the enzymatic substrates and products at a resolution of 300 nm. We show that when combined, these tools can map the activity distribution of different enzymes and measure their relative catalytic efficiency in living systems such as cancer cells, Caenorhabditis elegans, and brain tissues, and can be used to directly visualize caspase–phosphatase interactions during apoptosis. Our method is generally applicable to a broad category of enzymes and will enable new analyses of enzymes in their native context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Laser-scan MIP microscope for real-time bond-selective imaging of live cells at 300 nm spatial resolution.
Fig. 2: Development of nitrile chameleons for mapping specific enzyme activity.
Fig. 3: Real-time MIP imaging of nitrile chameleons generates the activity maps of caspase-3/7 and phosphatase in living cells.
Fig. 4: Multicolor MIP imaging of nitrile chameleons in live cancer cells provides evidence of caspase–phosphatase cooperation in apoptosis.
Fig. 5: Multicolor MIP imaging of nitrile chameleons generates activity maps of caspase and phosphatase inside C.elegans and brain tissues.

Similar content being viewed by others

Data availability

All data related to the work are available in the article and supplementary information in this paper. The original data for the figures are available at https://doi.org/10.5281/zenodo.10085096.

References

  1. Baruch, A., Jeffery, D. A. & Bogyo, M. Enzyme activity: it’s all about image. Trends Cell Biol. 14, 29–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Patel, T., Gores, G. J. & Kaufmann, S. H. The role of proteases during apoptosis. FASEB J. 10, 587–597 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J. et al. Fluorogenic probes for disease-relevant enzymes. Chem. Soc. Rev. 48, 683–722 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Chyan, W. & Raines, R. T. Enzyme-activated fluorogenic probes for live-cell and in vivo imaging. ACS Chem. Biol. 13, 1810–1823 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xing, B., Khanamiryan, A. & Rao, J. Cell-permeable near-infrared fluorogenic substrates for imaging β-lactamase activity. J. Am. Chem. Soc. 127, 4158–4159 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Grimm, J. B., Heckman, L. M. & Lavis, L. D. The chemistry of small-molecule fluorogenic probes. Prog. Mol. Biol. Transl. Sci. 113, 1–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Kwan, D. H. et al. Self-immobilizing fluorogenic imaging agents of enzyme activity. Angew. Chem. Int. Ed. Engl. 50, 300–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Johnson, D. S., Weerapana, E. & Cravatt, B. F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med. Chem. 2, 949–964 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Noe, M. C. & Gilbert, A. M. Targeted covalent enzyme inhibitors. Annu. Rep. Med. Chem. 47, 413–439 (2012).

    CAS  Google Scholar 

  10. He, H. et al. Enzymatic noncovalent synthesis. Chem. Rev. 120, 9994–10078 (2020).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou, J. et al. Enzyme-instructed self-assembly for spatiotemporal profiling of the activities of alkaline phosphatases on live cells. Chem 1, 246–263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, H. W. et al. In situ localization of enzyme activity in live cells by a molecular probe releasing a precipitating fluorochrome. Angew. Chem. Int. Ed. Engl. 56, 11788–11792 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Gao, Y. et al. Imaging self-assembly dependent spatial distribution of small molecules in a cellular environment. Langmuir 29, 15191–15200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zanetti-Domingues, L. C., Tynan, C. J., Rolfe, D. J., Clarke, D. T. & Martin-Fernandez, M. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding. PLoS One 8, e74200 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Bao, K. et al. Charge and hydrophobicity effects of NIR fluorophores on bone-specific imaging. Theranostics 5, 609–617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, B. J. & Xu, B. Enzyme-instructed self-assembly for cancer therapy and imaging. Bioconjug. Chem. 31, 492–500 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Razgulin, A., Ma, N. & Rao, J. Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chem. Soc. Rev. 40, 4186–4216 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Hamilton, B. R. et al. Mapping enzyme activity on tissue by functional mass spectrometry imaging. Angew. Chem. Int. Ed. Engl. 59, 3855–3858 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia, Q., Yin, J., Guo, Z. & Cheng, J.-X. Mid-infrared photothermal microscopy: principle, instrumentation, and applications. J. Phys. Chem. B 126, 8597–8613 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Bai, Y., Yin, J. & Cheng, J.-X. Bond-selective imaging by optically sensing the mid-infrared photothermal effect. Sci. Adv. 7, eabg1559 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Zhang, D. et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci. Adv. 2, e1600521 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  22. Yin, J. et al. Video-rate mid-infrared photothermal imaging by single-pulse photothermal detection per pixel. Sci. Adv. 9, eadg8814 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tai, F. et al. Detecting nitrile-containing small molecules by infrared photothermal microscopy. Analyst 146, 2307–2312 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Yin, J. et al. Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering. Nat. Commun. 12, 7097 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Gao, Y., Shi, J., Yuan, D. & Xu, B. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat. Commun. 3, 1033 (2012).

    Article  PubMed  ADS  Google Scholar 

  27. Yi, M. et al. Enzyme responsive rigid-rod aromatics target ‘undruggable’ phosphatases to kill cancer cells in a mimetic bone microenvironment. J. Am. Chem. Soc. 144, 13055–13059 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wei, L. et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods 11, 410–412 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, R. et al. Aggregation enhanced responsiveness of rationally designed probes to hydrogen sulfide for targeted cancer imaging. J. Am. Chem. Soc. 142, 15084–15090 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Hanczyc, P. & Fita, P. Laser emission of thioflavin T uncovers protein aggregation in amyloid nucleation phase. ACS Photonics 8, 2598–2609 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zaguri, D. et al. Kinetic and thermodynamic driving factors in the assembly of phenylalanine-based modules. ACS Nano 15, 18305–18311 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Fried, S. D. & Boxer, S. G. Measuring electric fields and noncovalent interactions using the vibrational Stark effect. Acc. Chem. Res. 48, 998–1006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feng, Z. et al. Artificial intracellular filaments. Cell Rep. Phys. Sci. 1, 100085 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Qiu, C. et al. Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery. Research 6, 0148 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He, H., Wang, H., Zhou, N., Yang, D. & Xu, B. Branched peptides for enzymatic supramolecular hydrogelation. Chem. Commun. 54, 86–89 (2018).

    Article  CAS  Google Scholar 

  36. Guo, J. et al. The ratio of hydrogelator to precursor controls the enzymatic hydrogelation of a branched peptide. Soft Matter 16, 10101–10105 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. He, H. et al. Dynamic continuum of nanoscale peptide assemblies facilitates endocytosis and endosomal escape. Nano Lett. 21, 4078–4085 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Sztiller‐Sikorska, M., Jakubowska, J., Wozniak, M., Stasiak, M. & Czyz, M. A non‐apoptotic function of caspase-3 in pharmacologically-induced differentiation of K562 cells. Br. J. Pharmacol. 157, 1451–1462 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wilhelm, S., Wagner, H. & Häcker, G. Activation of caspase-3-like enzymes in non-apoptotic T cells. Eur. J. Immunol. 28, 891–900 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Carlile, G. W., Smith, D. H. & Wiedmann, M. Caspase-3 has a nonapoptotic function in erythroid maturation. Blood 103, 4310–4316 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, J., Du, X., Li, J., Yamagata, N. & Xu, B. Taurine boosts cellular uptake of small D-peptides for enzyme-instructed intracellular molecular self-assembly. J. Am. Chem. Soc. 137, 10040–10043 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Andrews, L. D., Zalatan, J. G. & Herschlag, D. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases. Biochemistry 53, 6811–6819 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Li, X. et al. Introducing D-amino acid or simple glycoside into small peptides to enable supramolecular hydrogelators to resist proteolysis. Langmuir 28, 13512–13517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Torres, J. et al. Phosphorylation-regulated cleavage of the tumor suppressor PTEN by caspase-3: implications for the control of protein stability and PTEN–protein interactions. J. Biol. Chem. 278, 30652–30660 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Hallé, M. et al. Caspase-3 regulates catalytic activity and scaffolding functions of the protein tyrosine phosphatase PEST, a novel modulator of the apoptotic response. Mol. Cell. Biol. 27, 1172–1190 (2007).

    Article  PubMed  Google Scholar 

  46. Cai, Y. et al. Environment-sensitive fluorescent supramolecular nanofibers for imaging applications. Anal. Chem. 86, 2193–2199 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, C., Chang, J., Gorospe, M. & Passaniti, A. Protein tyrosine phosphatase regulation of endothelial cell apoptosis and differentiation. Cell Growth Differ. 7, 161–172 (1996).

    CAS  PubMed  Google Scholar 

  48. Halle, M., Tremblay, M. L. & Meng, T. C. Protein tyrosine phosphatases: emerging regulators of apoptosis. Cell Cycle 6, 2773–2781 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Sangwan, V. et al. Protein-tyrosine phosphatase 1B deficiency protects against Fas-induced hepatic failure. J. Biol. Chem. 281, 221–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Van Hoof, C. & Goris, J. Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. Biochim. Biophys. Acta 1640, 97–104 (2003).

    Article  PubMed  Google Scholar 

  51. Chen, M. J., Dixon, J. E. & Manning, G. Genomics and evolution of protein phosphatases. Sci. Signal. 10, eaag1796 (2017).

    Article  PubMed  Google Scholar 

  52. Brantley, S. J. et al. Discovery of small molecule inhibitors for the C. elegans caspase CED-3 by high-throughput screening. Biochem. Biophys. Res. Commun. 491, 773–779 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stergiou, L., Doukoumetzidis, K., Sendoel, A. & Hengartner, M. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans. Cell Death Differ. 14, 1129–1138 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Fonta, C., Négyessy, L., Renaud, L. & Barone, P. Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb. Cortex 14, 595–609 (2004).

    Article  PubMed  Google Scholar 

  55. Bardet, P.-L. et al. A fluorescent reporter of caspase activity for live imaging. Proc. Natl Acad. Sci. USA 105, 13901–13905 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Ye, D. et al. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat. Chem. 6, 519–526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Van de Bittner, G. C., Bertozzi, C. R. & Chang, C. J. Strategy for dual-analyte luciferin imaging: in vivo bioluminescence detection of hydrogen peroxide and caspase activity in a murine model of acute inflammation. J. Am. Chem. Soc. 135, 1783–1795 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ntziachristos, V., Tung, C.-H., Bremer, C. & Weissleder, R. Fluorescence molecular tomography resolves protease activity in vivo. Nat. Med. 8, 757–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Fujioka, H. et al. Multicolor activatable Raman probes for simultaneous detection of plural enzyme activities. J. Am. Chem. Soc. 142, 20701–20707 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Shi, L. et al. Mid-infrared metabolic imaging with vibrational probes. Nat. Methods 17, 844–851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by R35GM136223 and R33CA261726 to J.-X.C., R01CA142746 to B.X. and grant 2023-321163 from the Chan Zuckerberg Initiative Donor-Advised Fund at the Silicon Valley Community Foundation. Source data are provided with this paper.

Author information

Authors and Affiliations

Authors

Contributions

J.-X.C. and H.H. conceived the study. H.H. synthesized the probes, performed the experiments and drafted the paper. J.Y. developed the laser-scanning MIP microscope. J.Y. and M.L. helped with the MIP imaging. M.Y. and X.T. helped in the probe synthesis. M.Z. helped in the culturing and MIP imaging of C.elegans. C.V.P.D., Y.L. and Z.D. carried out the extraction of mice brains, tissue sectioning and tissue imaging. B.X. provided material support on synthesis and made intellectual contributions to experiment design.

Corresponding author

Correspondence to Ji-Xin Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Lingyan Shi, Stephen Weber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Molecular synthesis and identification, Supplementary Figs. 1–21, Supplementary Text and Supplementary Schemes 1–3.

Reporting Summary

Peer Review File

Supplementary Video 1

Live cell MIP imaging of the dynamic cellular movements at amide II.

Supplementary Video 2

3D reconstruction of phosphatase activity in C.elegans.

Supplementary Video 3

3D reconstruction of caspase activity in C.elegans.

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Yin, J., Li, M. et al. Mapping enzyme activity in living systems by real-time mid-infrared photothermal imaging of nitrile chameleons. Nat Methods 21, 342–352 (2024). https://doi.org/10.1038/s41592-023-02137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-023-02137-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing