Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adaptable, turn-on maturation (ATOM) fluorescent biosensors for multiplexed detection in cells

Abstract

A grand challenge in biosensor design is to develop a single-molecule, fluorescent protein-based platform that can be easily adapted to recognize targets of choice. Here, we created a family of adaptable, turn-on maturation (ATOM) biosensors consisting of a monobody (circularly permuted at one of two positions) or a nanobody (circularly permuted at one of three positions) inserted into a fluorescent protein at one of three surface loops. Multiplexed imaging of live human cells coexpressing cyan, yellow and red ATOM sensors detected biosensor targets that were specifically localized to various subcellular compartments. Fluorescence activation involved ligand-dependent chromophore maturation with turn-on ratios of up to 62-fold in cells and 100-fold in vitro. Endoplasmic reticulum- and mitochondria-localized ATOM sensors detected ligands that were targeted to those organelles. The ATOM design was validated with three monobodies and one nanobody inserted into distinct fluorescent proteins, suggesting that customized ATOM sensors can be generated quickly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biosensor design and screening y-ATOM sensors in HEK 293T cells.
Fig. 2: y-ATOM sensors show high selectivity and fluorescence turn-on in human cells.
Fig. 3: Characterization of purified y-ATOM sensors at 37 °C.
Fig. 4: Multiplexed three-color imaging shows ATOM sensors detect subcellular localization of protein targets.
Fig. 5: y-ATOMSH2 can function as an ER- or mitochondria-targeted biosensor.

Similar content being viewed by others

Data availability

All raw and processed data, statistical analyses and images (with associated metadata) generated in this work have been deposited to the Figshare repository (https://doi.org/10.58120/upstate.23959239.v2). This work did not generate any code. Plasmids expressing ATOM biosensors have been deposited to Addgene (Addgene codes 209702–209721). All other resources used in this study will be made available upon request.

References

  1. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl Acad. Sci. USA 96, 11241–11246 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nasu, Y., Shen, Y., Kramer, L. & Campbell, R. E. Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 17, 509–518 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. van der Linden, F. H. et al. A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium. Nat. Commun. 12, 7159 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Inoue, M. et al. Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat. Methods 12, 64–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Inoue, M. et al. Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics. Cell 177, 1346–1360.e24 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Sun, X. R. et al. Fast GCaMPs for improved tracking of neuronal activity. Nat. Commun. 4, 2170 (2013).

    Article  PubMed  Google Scholar 

  8. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Binz, H. K., Amstutz, P. & Plückthun, A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23, 1257–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Koide, A., Bailey, C. W., Huang, X. & Koide, S. The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284, 1141–1151 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Kroning, K. E. et al. A modular fluorescent sensor motif used to detect opioids, protein–protein interactions, and protease activity. ACS Chem. Biol. 17, 2212–2220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stumpp, M. T., Binz, H. K. & Amstutz, P. DARPins: a new generation of protein therapeutics. Drug Discov. Today 13, 695–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Amstutz, P. et al. Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J. Biol. Chem. 280, 24715–24722 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Nord, K. et al. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat. Biotechnol. 15, 772–777 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Lajoie, M. J. et al. Designed protein logic to target cells with precise combinations of surface antigens. Science 369, 1637–1643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. John, A. M., Sekhon, H., Ha, J.-H. & Loh, S. N. Engineering a fluorescent protein color switch using entropy-driven β-strand exchange. ACS Sens. 7, 263–271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wojcik, J. et al. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Nat. Struct. Mol. Biol. 17, 519–527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gupta, A. et al. Facile target validation in an animal model with intracellularly expressed monobodies. Nat. Chem. Biol. 14, 895–900 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spencer-Smith, R. et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat. Chem. Biol. 13, 62–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Fridy, P. C. et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 11, 1253–1260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Do, K. & Boxer, S. G. GFP variants with alternative β-strands and their application as light-driven protease sensors: a tale of two tails. J. Am. Chem. Soc. 135, 10226–10229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Balleza, E., Kim, J. M. & Cluzel, P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods 15, 47–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, P. et al. WDR5 modulates cell motility and morphology and controls nuclear changes induced by a 3D environment. Proc. Natl Acad. Sci. USA 115, 8581–8586 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sirvent, A., Benistant, C. & Roche, S. Cytoplasmic signalling by the c-Abl tyrosine kinase in normal and cancer cells. Biol. Cell 100, 617–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, J.-H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE https://doi.org/10.1371/journal.pone.0018556 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shariati, K. et al. A superfolder green fluorescent protein-based biosensor allows monitoring of chloride in the endoplasmic reticulum. ACS Sens. 7, 2218–2224 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oliinyk, O. S. et al. Single-domain near-infrared protein provides a scaffold for antigen-dependent fluorescent nanobodies. Nat. Methods 19, 740–750 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang, J. C. et al. Detection and manipulation of live antigen-expressing cells using conditionally stable nanobodies. eLife 5, e15312 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Feng, J. et al. A general strategy to construct small molecule biosensors in eukaryotes. eLife 4, e10606 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Navarro, R., Chen, L., Rakhit, R. & Wandless, T. J. A novel destabilizing domain based on a small-molecule dependent fluorophore. ACS Chem. Biol. 11, 2101–2104 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sekhon, H., Ha, J.-H. & Loh, S. N. Enhancing response of a protein conformational switch by using two disordered ligand binding domains. Front. Mol. Biosci. 10, 1114756 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng, H., Bi, J., Krendel, M. & Loh, S. N. Converting a binding protein into a biosensing conformational switch using protein fragment exchange. Biochemistry 53, 5505–5514 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Dingus, J. G., Tang, J. C., Amamoto, R., Wallick, G. K. & Cepko, C. L. A general approach for stabilizing nanobodies for intracellular expression. eLife 11, e68253 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nasu, Y. et al. A genetically encoded fluorescent biosensor for extracellular l-lactate. Nat. Commun. 12, 7058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, S.-Y. et al. A sensitive and specific genetically-encoded potassium ion biosensor for in vivo applications across the tree of life. PLoS Biol. 20, e3001772 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blanden, A. R. et al. Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants. eLife 9, e61487 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X. Wang and X.-J. Chen for advice on mitochondrial imaging and for the gift of HEK 293T and HeLa cells, R. Oot and S. Wilkens for the gift of MDA-MB-231 cells, M. Mollapour for the gift of COS-7 cells, M. Cosgrove for the gift of the WDR5 expression plasmid and S. Koide for the gift of the MBSH2 and SH2 genes. This work was supported by National Institutes of Health grant nos. F30 GM146428 to H.S. and R01 GM148448 to S.N.L.

Author information

Authors and Affiliations

Authors

Contributions

J.-H.H., H.S. and S.N.L. conceived and designed the study. H.S. validated the ATOM biosensors in mammalian cells. J.-H.H. compared ATOM to relating biosensors. H.S. and J.-H.H. performed all cloning. A.R.J., M.F.P., S.B.P., P.O.M. and S.N.L. purified and evaluated ATOM performance in vitro. H.S., J.-H.H. and S.N.L. wrote the paper, with contributions from all authors including A.M.J.

Corresponding author

Correspondence to Stewart N. Loh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Moritoshi Sato, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Ligand-dependent ATOM turn-on in cells is not due to increased biosensor levels.

HEK 293T cells were co-transfected with one plasmid encoding y-ATOMWDR5, y-ATOMSH2, y-ATOMRAS, or y-ATOMmCh and a second plasmid expressing WDR5, SH2, hRAS, or mCh. After 48 h, cells were fixed, stained with an anti-GFP antibody conjugated with Alexa594, and imaged in the red channel (antibody; data depicted as gray points) and yellow channel (biosensor; data depicted in indicated colors). Each data point represents a cell (50–100 per experiment). Scale bars are 200 µm. The results are representative of three BR. Number of cells, means, standard deviations, and P values obtained by a two-tailed t-test for all valid comparisons are included in Extended Data Table 1.

Extended Data Fig. 2 r-ATOMWDR5, y-ATOMSH2, and c-ATOMRAS, co-expressed in the same cells, exhibit high turn-on values in the presence of their target ligands but not in the presence of noncognate ligands.

To match Fig. 4, the cyan channel (hRAS) is pseudocolored red, the yellow channel (SH2) is pseudocolored green, and the red channel (WDR5) is pseudocolored blue. HEK 293T cells were co-transfected with an equimolar mixture of three biosensor plasmids and a fourth plasmid encoding WDR5 (first row), SH2 (second row), and hRAS (third row). The fourth row shows the same experiment, but the fourth plasmid expressed all three ligands as described in the text. Scale bars are 200 µm. Turn-on ratios in each color channel (bottom plots) were calculated by dividing the average intensity of cells expressing the biosensor and its cognate ligand by the average of the intensities of cells expressing the same biosensor and the two negative control ligands. Each data point represents a cell (40–60 per experiment). P < 10−4 for all comparisons shown. The results are representative of three BR. Number of cells, means, standard deviations, and P values obtained by a two-tailed t-test for all valid comparisons are included in Extended Data Table 1.

Extended Data Fig. 3 y-ATOMWDR5 detects endogenous WDR5 and identifies nuclear localization in HEK 293T cells.

Staining with anti-GFP antibody (red) indicated that WT and R80A mutant y-ATOMWDR5 were both expressed in cytoplasm and nucleus, with highest levels in the cytoplasm. Imaging in the yellow channel (pseudocolored green) showed the WT biosensor was activated in the nucleus but in the OFF state in the cytoplasm. R80A y-ATOMWDR5 was dark in both cytoplasm and nucleus. Scale bars are 20 µm. Each data point represents one cell (61 cells per experiment). ****, P < 10−4; ns, not significant. Results are representative of 3 BR. Number of cells, means, standard deviations, and P values obtained by a two-tailed t-test for all valid comparisons are included in Extended Data Table 1.

Extended Data Fig. 4 Performance of NIR-FbGFP localized to cytoplasm, mitochondria, and ER of HEK 293T cells.

Cells were co-transfected with plasmids encoding NIR-FbGFP and Clover (tagged with indicated localization sequences) and imaged in the far-red channel to quantify compartment-specific turn-on. (b) The same cells were imaged in the green channel to determine relative Clover expression. Scale bars are 200 µm. Results are representative of 3 BR.

Extended Data Table 1 Statistical values for cellular data shown in Figures

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1 and 2.

Reporting Summary

Peer Review File

Supplementary Table 1

Excel table with primers used in this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhon, H., Ha, JH., Presti, M.F. et al. Adaptable, turn-on maturation (ATOM) fluorescent biosensors for multiplexed detection in cells. Nat Methods 20, 1920–1929 (2023). https://doi.org/10.1038/s41592-023-02065-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-023-02065-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing