Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Subcellular omics: a new frontier pushing the limits of resolution, complexity and throughput

We argue that the study of single-cell subcellular organelle omics is needed to understand and regulate cell function. This requires and is being enabled by new technology development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis of mitochondria as an exemplar of single-cell organelle chemical and biology detection methods.

References

  1. Dueck, H., Eberwine, J. & Kim, J. Bioessays 38, 172–180 (2016).

    Article  PubMed  Google Scholar 

  2. Sterling, P. Physiol. Behav. 106, 5–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Rosca, M. G. & Hoppel, C. L. Cardiovasc. Res. 88, 40–50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grimm, A. & Eckert, A. J. Neurochem. 143, 418–431 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lie, P. P. Y. & Nixon, R. A. Neurobiol. Dis. 122, 94–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Sajed, T. et al. Nucleic Acids Res. 44, D495–D501 (2016). D1.

    Article  CAS  PubMed  Google Scholar 

  7. Castro, D. C., Xie, Y. R., Rubakhin, S. S., Romanova, E. V. & Sweedler, J. V. Nat. Methods 18, 1233–1238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pflugradt, R., Schmidt, U., Landenberger, B., Sänger, T. & Lutz-Bonengel, S. Mitochondrion 11, 308–314 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Neumann, E. K., Do, T. D., Comi, T. J. & Sweedler, J. V. Angew. Chem. Int. Ed. 58, 9348–9364 (2019).

    Article  CAS  Google Scholar 

  10. Li, J. & Eberwine, J. Nat. Protoc. 13, 811–818 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, H. T., Kacharmina, J. E., Miyashiro, K., Greene, M. I. & Eberwine, J. Proc. Natl Acad. Sci. USA 98, 5497–5502 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Nat. Methods 18, 133–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Stoeckius, M. et al. Genome Biol. 19, 224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyashiro, K. Y. et al. Neuron 37, 417–431 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Zaikin, V. G. & Borisov, R. S. Crit. Rev. Anal. Chem. 52, 1287–1342 (2021).

    Article  PubMed  Google Scholar 

  16. Alfaro, J. A. et al. Nat. Methods 18, 604–617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kafader, J. O. et al. J. Proteome Res. 19, 1346–1350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schur, F. K. M., Hagen, W. J. H., de Marco, A. & Briggs, J. A. G. J. Struct. Biol. 184, 394–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Yadavali, S., Jeong, H.-H., Lee, D. & Issadore, D. Nat. Commun. 9, 1222 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guo, A. C. et al. Nucleic Acids Res. 41, D625–D630 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Keller, B. O. & Li, L. J. Am. Soc. Mass Spectrom. 12, 1055–1063 (2001).

    Article  CAS  Google Scholar 

  22. Mesbah, K., Thai, R., Bregant, S. & Malloggi, F. Sci. Rep. 7, 6756 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sage, E. et al. Nat. Commun. 6, 6482 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Twerenbold, D. Cryogenic detectors: detection of single molecules. In Encyclopedia of Life Sciences (Wiley, 2006); https://doi.org/10.1002/9780470015902.a0006203

  25. Twerenbold, D. et al. Proteomics 1, 66–69 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Gunnarsson, A., Kollmer, F., Sohn, S., Höök, F. & Sjövall, P. Anal. Chem. 82, 2426–2433 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Lovrić, J. et al. ACS Nano 11, 3446–3455 (2017).

    Article  PubMed  Google Scholar 

  28. Li, Z. et al. Anal. Chem. 92, 10138–10144 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Yao, H. et al. Anal. Chem. 91, 9777–9783 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Yao, H. et al. Anal. Chem. 93, 10282–10291 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Gadalla, R. et al. Front. Oncol. 9, 415 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Caprioli, R. M. J. Biomol. Tech. 30, 7–11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Buchberger, A. R., DeLaney, K., Johnson, J. & Li, L. Anal. Chem. 90, 240–265 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Curr. Biol. 8, 1227–1230 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Maulbetsch, W., Wiener, B., Poole, W., Bush, J. & Stein, D. Phys. Rev. Appl. 6, 054006 (2016).

    Article  Google Scholar 

  36. Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. Cell 161, 438–449 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van der Schot, G. et al. Nat. Commun. 6, 5704 (2015).

    Article  PubMed  Google Scholar 

  38. Eberwine, J. H., Spencer, C., Newell, D. & Hoffman, A. R. Microsc. Res. Tech. 25, 19–28 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, C. et al. Science 356, 189–194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marx, V. Nat. Methods 18, 9–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Moses, L. & Pachter, L. Nat. Methods 19, 534–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, G., Moffitt, J. R. & Zhuang, X. Sci. Rep. 8, 4847 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen, A. et al. Cell 185, 1777–1792.e21 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen, H. Q. et al. Nat. Methods 17, 822–832 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (CRC, 2019).

  46. Zou, J. et al. Nat. Genet. 51, 12–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Ronnenberger, O., Fischer, P. & Brox, T. Lect. Notes Comput. Sci. https://doi.org/10.1007/978-3-319-24574-4_28 (2015).

  48. He, B. et al. Nat. Biomed. Eng. 4, 827–834 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Turner, M. G. Annu. Rev. Ecol. Evol. Syst. 36, 319–344 (2005).

    Article  Google Scholar 

  50. Miao, Z., Humphreys, B. D., McMahon, A. P. & Kim, J. Nat. Rev. Nephrol. 17, 710–724 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fazal, F. M. et al. Cell 178, 473–490.e26 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lovatt, D. et al. Nat. Methods 11, 190–196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sul, J. Y. et al. Proc. Natl Acad. Sci. USA 106, 7624–7629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been funded in part by a US NHGRI Center of Excellence in Genomic Sciences (CEGS) grant to the Center for Sub-cellular Genomics (RM1HG010023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James Eberwine or Junhyong Kim.

Ethics declarations

Competing interests

J.E. is a member of the US National Institutes of Health BRAIN Initiative Multi-Council Working Group. D.I. is a co-founder of and owns equity in Chip Diagnostics and InfiniFluidics. D.L. is a co-founder of and owns equity in InfiniFluidics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Alessandro Ori and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eberwine, J., Kim, J., Anafi, R.C. et al. Subcellular omics: a new frontier pushing the limits of resolution, complexity and throughput. Nat Methods 20, 331–335 (2023). https://doi.org/10.1038/s41592-023-01788-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-023-01788-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing