Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directed evolution of adeno-associated virus for efficient gene delivery to microglia

Abstract

As the resident immune cells in the central nervous system (CNS), microglia orchestrate immune responses and dynamically sculpt neural circuits in the CNS. Microglial dysfunction and mutations of microglia-specific genes have been implicated in many diseases of the CNS. Developing effective and safe vehicles for transgene delivery into microglia will facilitate the studies of microglia biology and microglia-associated disease mechanisms. Here, we report the discovery of adeno-associated virus (AAV) variants that mediate efficient in vitro and in vivo microglial transduction via directed evolution of the AAV capsid protein. These AAV-cMG and AAV-MG variants are capable of delivering various genetic payloads into microglia with high efficiency, and enable sufficient transgene expression to support fluorescent labeling, Ca2+ and neurotransmitter imaging and genome editing in microglia in vivo. Furthermore, single-cell RNA sequencing shows that the AAV-MG variants mediate in vivo transgene delivery without inducing microglia immune activation. These AAV variants should facilitate the use of various genetically encoded sensors and effectors in the study of microglia-related biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AAV-cMG mediates efficient gene transduction in cultured microglia.
Fig. 2: Directed evolution generates AAV-MGs that mediate efficient gene transduction in microglia in vivo.
Fig. 3: In vivo transduction of microglia by AAV-MGs does not induce microglia activation.
Fig. 4: AAV-MGs enable in vivo two-photon imaging of microglial Ca2+ signal and ATP transmission.
Fig. 5: AAV-MGs mediate efficient genome editing of microglia in vivo.
Fig. 6: AAV-MG delivery of SaCas9 for in vivo genome editing in microglia.

Similar content being viewed by others

Data availability

All numerical source data are provided with this paper. The next-generation sequencing datasets reported in this work are available under the GEO accession number GSE197743. The GRCm38 reference genome assembly was downloaded from https://nov2020.archive.ensembl.org/Mus_musculus/Info/Index. The following plasmids are deposited to Addgene: rAAV2/cMG (184539), rAAV2/MG1.1 (184540), rAAV2/MG1.2 (184541), rAAV2/cMG.WPP (184542) and rAAV2/cMG.QRP (184543). The raw images generated in this study are not suitable for distribution through public repositories due to the large file size and are available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

The codes and scripts for analysis of the sequencing data included in this paper are available at https://github.com/RuiyuRayWang/Lin_AAV_Microglia_public.

References

  1. Colonna, M. & Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prinz, M., Jung, S. & Priller, J. Microglia biology: one century of evolving concepts. Cell 179, 292–311 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35, 369–389 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen, P. T. et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 182, 388–403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Badimon, A. et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Merlini, M. et al. Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nat. Neurosci. 24, 19–23 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Pluvinage, J. V. et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568, 187–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keane, L., Cheray, M., Blomgren, K. & Joseph, B. Multifaceted microglia: key players in primary brain tumour heterogeneity. Nat. Rev. Neurol. 17, 243–259 (2021).

    Article  PubMed  Google Scholar 

  17. Gutmann, D. H. & Kettenmann, H. Microglia/brain macrophages as central drivers of brain tumor pathobiology. Neuron 104, 442–449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen, X. et al. Glioma-induced inhibition of caspase-3 in microglia promotes a tumor-supportive phenotype. Nat. Immunol. 17, 1282–1290 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Lewcock, J. W. et al. Emerging microglia biology defines novel therapeutic approaches for Alzheimer’s disease. Neuron 108, 801–821 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Bedbrook, C. N., Deverman, B. E. & Gradinaru, V. Viral strategies for targeting the central and peripheral nervous systems. Annu. Rev. Neurosci. 41, 323–348 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Jüttner, J. et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat. Neurosci. 22, 1345–1356 (2019).

    Article  PubMed  CAS  Google Scholar 

  24. Sahel, J.-A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27, 1223–1229 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Cucchiarini, M., Ren, X. L., Perides, G. & Terwilliger, E. F. Selective gene expression in brain microglia mediated via adeno-associated virus type 2 and type 5 vectors. Gene Ther. 10, 657–667 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Rosario, A. M. et al. Microglia-specific targeting by novel capsid-modified AAV6 vectors. Mol. Ther. Methods Clin. Dev. 3, 16026 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Su, W. et al. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia. J. Neurochem. 136, 49–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Maes, M. E., Colombo, G., Schulz, R. & Siegert, S. Targeting microglia with lentivirus and AAV: recent advances and remaining challenges. Neurosci. Lett. 707, 134310 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O’Carroll, S. J., Cook, W. H. & Young, D. AAV targeting of glial cell types in the central and peripheral nervous system and relevance to human gene therapy. Front. Mol. Neurosci. 13, 618020 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Maes, M. E., Wögenstein, G. M., Colombo, G., Casado-Polanco, R. & Siegert, S. Optimizing AAV2/6 microglial targeting identified enhanced efficiency in the photoreceptor degenerative environment. Mol. Ther. Methods Clin. Dev. 23, 210–224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raupp, C. et al. The threefold protrusions of adeno-associated virus type 8 are involved in cell surface targeting as well as postattachment processing. J. Virol. 86, 9396–9408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kronenberg, S., Kleinschmidt, J. A. & Böttcher, B. Electron cryo-microscopy and image reconstruction of adeno-associated virus type 2 empty capsids. EMBO Rep. 2, 997–1002 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DiMattia, M. A. et al. Structural insight into the unique properties of adeno-associated virus serotype 9. J. Virol. 86, 6947–6958 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ransohoff, R. M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci. 19, 987–991 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Suzumura, A., Sawada, M., Itoh, Y. & Marunouchi, T. Interleukin-4 induces proliferation and activation of microglia but suppresses their induction of class II major histocompatibility complex antigen expression. J. Neuroimmunol. 53, 209–218 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paulk, N. K., Loza, L. M., Finegold, M. J. & Grompe, M. AAV-mediated gene targeting is significantly enhanced by transient inhibition of nonhomologous end joining or the proteasome in vivo. Hum. Gene Ther. 23, 658–665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nicolson, S. C., Li, C., Hirsch, M. L., Setola, V. & Samulski, R. J. Identification and validation of small molecules that enhance recombinant adeno-associated virus transduction following high-throughput screens. J. Virol. 90, 7019–7031 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Monahan, P. E. et al. Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models: a strategy for broad clinical application. Mol. Ther. 18, 1907–1916 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gong, H. et al. Transduction catalysis: doxorubicin amplifies rAAV-mediated gene expression in the cortex of higher-order vertebrates. iScience 24, 102685 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaiser, T. & Feng, G. Tmem119-EGFP and Tmem119-CreERT2 transgenic mice for labeling and manipulating microglia. eNeuro 6, ENEURO.0448-18.2019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang, S. et al. Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development. Nat. Commun. 11, 5275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://doi.org/10.48550/arxiv.1802.03426 (2018).

  45. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008).

    Article  Google Scholar 

  46. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ndoja, A. et al. Ubiquitin ligase COP1 suppresses neuroinflammation by degrading c/EBPβ in microglia. Cell 182, 1156–1169 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Preprint at https://doi.org/10.1101/2021.11.08.467793 (2021).

  50. Wu, Z. et al. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 110, 770–782 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Priller, J. & Prinz, M. Targeting microglia in brain disorders. Science 365, 32–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Stratoulias, V., Venero, J. L., Tremblay, M.-È. & Joseph, B. Microglial subtypes: diversity within the microglial community. EMBO J. 38, e101997 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ulland, T. K. & Colonna, M. TREM2: a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Masuda, T. et al. Novel Hexb-based tools for studying microglia in the CNS. Nat. Immunol. 21, 802–815 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. McKinsey, G. L. et al. A new genetic strategy for targeting microglia in development and disease. eLife 9, e54590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sahasrabuddhe, V. & Ghosh, H. S. Cx3Cr1-Cre induction leads to microglial activation and IFN-1 signaling caused by DNA damage in early postnatal brain. Cell Rep. 38, 110252 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Shin, J.-H., Yue, Y. & Duan, D. Recombinant adeno-associated viral vector production and purification. Methods Mol. Biol. 798, 267–284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin, R. et al. Cell-type-specific and projection-specific brain-wide reconstruction of single neurons. Nat. Methods 15, 1033–1036 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Bohlen, C. J. et al. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94, 759–773 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marsh, S. E. et al. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nat. Neurosci. 25, 306–316 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Cardona, A. E., Huang, D., Sasse, M. E. & Ransohoff, R. M. Isolation of murine microglial cells for RNA analysis or flow cytometry. Nat. Protoc. 1, 1947–1951 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl Acad. Sci. USA 113, E1738–E1746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Collins, H. Y. & Bohlen, C. J. Isolation and culture of rodent microglia to promote a dynamic ramified morphology in serum-free medium. J. Vis. Exp. (133), 57122 (2018).

  67. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Van de Sande, B. et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 15, 2247–2276 (2020).

    Article  PubMed  CAS  Google Scholar 

  72. Janky, R. et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput. Biol. 10, e1003731 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all members of M.L.’s laboratory for their assistance in this study. M.L. is supported by Ministry of Science and Technology China Brain Initiative Grant (2021ZD0202803), the Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences (2019RU003), and the Beijing Municipal Government. The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.L. and M.L. designed the experiments. R.L. and Y.Z. performed most of the experiments. T.Y. performed the experiments that involved cultured mouse microglia. R.W., T.Y., X.Zha., X.Zho. and L.Z. performed scRNA-seq and analysis. Z.W. and Y.L. developed the ATP fluorescent sensor, GRABATP. H.L. performed the in vivo imaging. Y.Z. and F.Z. packaged AAV viruses. R.L. and M.L. wrote the manuscript with contributions from all of the authors.

Corresponding authors

Correspondence to Rui Lin or Minmin Luo.

Ethics declarations

Competing interests

The National Institute of Biological Sciences (NIBS), Beijing, China has filed patent applications related to this work with R.L. and M.L. listed as inventors. All other authors have no competing interests.

Peer review

Peer review information

Nature Methods thanks Sandra Siegert, Amanda Sierra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Nina Vogt, in collaboration with the Nature Methods team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 AAV-cMG transduction does not activate microglia and does not blunt microglial responses to lipopolysaccharide (LPS) and interleukin-4 (IL4).

a, Principal component analysis of the transcriptomes of cultured mouse microglia from four treatment groups: control untransduced, lipopolysaccharide (LPS)-treated, interleukin-4-treated (IL4) and AAV-cMG-transduced group (n = 3 replicates for each group). b, Hierarchical clustering performed on marker genes of microglial states for different treatment groups as shown in (a). The color bar represents the z-score of the relative gene expression. c, Principal component analysis of the transcriptomes of cultured mouse microglia from five treatment groups: untransduced microglia (n = 3), untransduced microglia treated with LPS (n = 1), untransduced microglia treated with IL4 (n = 3), AAV-cMG-transduced microglia treated with LPS (n = 3), and AAV-cMG-transduced microglia treated with IL4 (n = 3). d, Hierarchical clustering performed on LPS- or IL4-treated microglia as shown in (c). The color bar represents the Euclidean distance between samples.

Extended Data Fig. 2 Representative images of serial coronal sections of the striatum from Cx3cr1CreER mice injected with AAV9-, AAV6TM-, AAV8-, AAV-cMG.QRP-, AAV-cMG.WPP-, AAV-MG1.1-, or AAV-MG1.2-SFFV-DIO-mScarlet.

Scale bar, 500 µm.

Extended Data Fig. 3 Schematic of in vivo selection of AAV-cMG.WPP variants library by the Cre recombination-based AAV targeted evolution (CREATE) strategy.

The AAV-cMG.WPP variants library was injected into the striatum and the midbrain of Cx3cr1CreER mice, which selectively express Cre recombinase in microglia. For those variants that successfully transduced microglia, Cre flipped the double-floxed inverse open reading frame (DIO) on their AAV genomes, allowing the selective amplification and recovery of the heptamer insertion sequences using a pair of primers.

Extended Data Fig. 4 AAV-MGs mediate efficient microglial transduction in vivo.

a, Representative images showing the mScarlet expression patterns in the orbitofrontal cortex (OFC) of Cx3cr1CreER mice injected with AAV-cMG.WPP-, AAV-MG1.1-, or AAV-MG1.2-SFFV-DIO-mScarlet. Scale bar, 500 µm. b, Cell counts of mScarlet and Iba double-positive cells in the OFC of Cx3cr1CreER mice injected with AAV-cMG.WPP- (n = 3), AAV-MG1.1- (n = 5), or AAV-MG1.2-SFFV-DIO-mScarlet (n = 5) (two-way ANOVA with Tukey’s post-hoc test; cMG.WPP vs. MG1.1: P < 0.0001; AAV-cMG.WPP vs. AAV-MG1.2: P < 0.0001). Data are presented as mean ± standard error of the mean (s.e.m.). c, Quantification of the percentage of Iba-positive microglia that are labeled by mScarlet in the OFC of Cx3cr1CreER mice injected with AAV-MG1.1- or AAV-MG1.2-SFFV-DIO-mScarlet (n = 5 mice for each group). The quantifications were conducted over an area of 1 × 1 mm2. Data are presented as mean ± s.e.m. d, Representative images showing the mScarlet expression patterns in the midbrain of Cx3cr1CreER mice injected with AAV-cMG.WPP-, AAV-MG1.1-, or AAV-MG1.2-SFFV-DIO-mScarlet. Scale bar, 500 µm. e, Cell counts of mScarlet and Iba double-positive cells in the midbrain of Cx3cr1CreER mice injected with AAV-cMG.WPP- (n = 3), AAV-MG1.1- (n = 5), or AAV-MG1.2-SFFV-DIO-mScarlet (n = 5) (two-way ANOVA with Tukey’s post-hoc test; cMG.WPP vs. MG1.1: P < 0.0001; AAV-cMG.WPP vs. AAV-MG1.2: P < 0.0001). Data are presented as mean ± s.e.m. f, Representative images showing the mScarlet expression patterns in the hippocampus and the thalamus of Cx3cr1CreER mice injected with AAV-MG1.1- or AAV-MG1.2-SFFV-DIO-mScarlet (right). Scale bar, 500 µm.

Source data

Extended Data Fig. 5 Selective Cre-dependent transgene expression in microglia by AAV-MGs.

a, Representative images showing the striatum of mice injected with AAV-MG1.1- or AAV-MG1.2-SFFV-DIO-mScarlet. The left panel shows the striatum of C57BL/6N mice received intrastriatal virus injection together with i.p. tamoxifen injection. The right panel shows the striatum of Cx3cr1CreER mice received intrastriatal virus injection without tamoxifen administration. Scale bars, 500 µm. b, Representative images showing the colocalization of mScarlet and Iba+ immunosignals in the OFC and the midbrain of Cx3cr1CreER mice injected with AAV-MG1.1- or AAV-MG1.2-SFFV-DIO-mScarlet. Scale bars, 50 µm. c, Representative images showing the colocalization of mScarlet and Iba+ immunosignals in the striatum of Tmem119CreER mice injected with AAV-MG1.1- or AAV-MG1.2-SFFV-DIO-mScarlet. Scale bars, 50 µm. d, Quantification of the percentage of mScarlet and Iba double-positive cells among total mScarlet-positive cells in the striatum of Tmem119CreER mice injected with AAV-MG1.1- or AAV-MG1.2-SFFV-DIO-mScarlet. Data are presented as scatter and mean.

Source data

Extended Data Fig. 6 AAV-MGs effectively transduce neurons and astrocytes in vivo but do not efficiently transduce cultured microglia.

a, Representative images showing the mScarlet expression patterns in the striatum of C57BL/6 N mice injected with a virus mixture of AAV-Ef1a-Cre and AAV-MG1.1-SFFV-DIO-mScarlet or a virus mixture of AAV-Ef1a-Cre and AAV-MG1.2-SFFV-DIO-mScarlet. Yellow: mScarlet, blue: DAPI. Scale bars, 500 µm (slide scanning) and 100 µm (confocal images). b, Representative images showing the colocalization of mScarlet and NeuN+/GFAP+ immunosignals in the striatum of C57BL/6 N mice injected with a virus mixture of AAV-Ef1a-Cre and AAV-MG1.1-SFFV-DIO-mScarlet or a virus mixture of AAV-Ef1a-Cre and AAV-MG1.2-SFFV-DIO-mScarlet. Scale bars, 50 µm. c, Representative fluorescent and bright-field images of cultured mouse microglia transduced with mScarlet reporter rAAVs packaged using AAV-MG1.1 or AAV-MG1.2. Scale bars, 200 µm.

Extended Data Fig. 7 Reference (10x) and query (Smart-seq2) single-cell RNA sequencing datasets characterizing the single-cell transcriptomes of microglia.

a,d, Quantification of gene counts, UMI counts, the percentage of mitochondria RNA, and the percentage of ribosome RNA in the query (a) and the reference (d) datasets. Red dots represent sequenced microglia that failed to pass the quality check and were removed from subsequent analysis. b,e, UMAP plot of all cells (left and middle) and filtered microglia (right) sequenced using the Smart-seq2 protocol (b) or 10x Genomics platform (e). The blue color in the left panel indicates Hexb expression level. Cells with high Hexb expression (red in the middle panel) were identified as microglia and retained for subsequent analysis. c, Violin plots showing the UMI counts and the number of detected genes in the reference and the query datasets. f,g, Gene expression analysis of the query (f) and the reference (g) datasets. The heatmap shows the z-score of relative gene expression. The violin plots show the expression level of homeostatic marker genes (P2ry12, Cx3cr1, Sall1 and Csf1r) and reactive marker genes (Il1b, Spp1, Ifitm3 and Ccl5).

Extended Data Fig. 8 The expression levels of homeostatic or reactive microglia marker genes are not correlated with AAV-MGs-mediated transgene expression.

a,b, Violin plots showing the expression of classical homeostatic (a) and reactive (b) marker genes in the Smart-seq2-sequenced microglia from Cx3cr1CreER mice injected with AAV-MG1.1- or AAV-MG-1.2-SFFV-DIO-mScarlet. Microglia that have no mScarlet transcript detected (normalized mScarlet expression = 0) are annotated as ‘untransduced’. c,d, Scatter plots showing the expression levels of classical homeostatic (c) and reactive (d) marker genes against the expression levels of mScarlet in AAV-MGs-transduced microglia sequenced using Smart-seq2. The Spearman correlation coefficient and the significance level are shown in each panel.

Extended Data Fig. 9 AAV-MG1.2 enables in vivo two-photon imaging of microglia extracellular ATP changes following acute laser ablation.

a, Representative images showing the colocalization of jGCaMP8s (HA-tag immunosignals) and Iba+ immunosignals in the primary somatosensory (S1) cortex of Cx3cr1CreER mice injected with AAV-MG1.2-SFFV-DIO-jGCaMP8s. Scale bar, 50 µm. b, Representative images showing the colocalization of GRABATP1.0 (HA-tag immunosignals) and Iba+ immunosignals in the S1 cortex of Cx3cr1CreER mice injected with AAV-MG1.2-SFFV-DIO-GRABATP1.0. Scale bar, 50 µm. c, Quantification of GRABATP1.0 fluorescence signals at microglial somata in the control mice (n = 10 cells; black) or in the mice that received laser ablation (n = 16 cells; red) (two-way ANOVA; P values as listed in the figure). Data are presented as mean ± s.e.m. d, Image showing GRABATP1.0 expression in microglia and heatmaps showing the GRABATP1.0 fluorescence signals at 10, 20, and 40 min in the imaging session. For the laser ablation group, the laser was applied at the center of field of view at the beginning (0 min) of the imaging session. Scale bar, 100 µm.

Source data

Extended Data Fig. 10 In vivo microglia-specific gene knockout mediated by AAV-MGs.

a, Representative images of serial coronal sections of the striatum from a Cx3cr1CreER:Rosa26-LSL-Cas9-GFP mouse injected with AAV-MG1.1-sgRNA-LacZ or AAV-MG1.1-sgRNA-Tmem119. The brain sections were immunostained against Tmem119. Scale bar, 500 µm. b, Representative images of serial coronal sections of the striatum from a Cx3cr1CreER:Rosa26-LSL-Cas9-GFP mouse injected with AAV-MG1.2-sgRNA-LacZ or AAV-MG1.2-sgRNA-Cd68. The brain sections were immunostained against Cd68. Scale bar, 500 µm. c, Representative images of the S1 cortex of Cx3cr1GFP mice injected with AAV-MG1.2-CMV-SaCas9 or AAV-MG1.2-CMV-SaCas9-U6-sgRNA-P2ry12. The brain sections were immunostained against P2ry12. Scale bar, 100 µm. d, Quantification of the percentage of P2ry12-positive pixels in a 1 × 1 mm2 region in the S1 cortex of Cx3cr1GFP mice injected with AAV-MG1.2-CMV-SaCas9 (n = 2) or AAV-MG1.2-CMV-SaCas9-sgRNA-P2ry12 (n = 3) (two-way ANOVA; P values as listed in the figure). Data are presented as mean ± s.e.m.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–6

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Source Data Extended Data Fig. 4

Statistical Source Data

Source Data Extended Data Fig. 5

Statistical Source Data

Source Data Extended Data Fig. 9

Statistical Source Data

Source Data Extended Data Fig. 10

Statistical Source Data

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., Zhou, Y., Yan, T. et al. Directed evolution of adeno-associated virus for efficient gene delivery to microglia. Nat Methods 19, 976–985 (2022). https://doi.org/10.1038/s41592-022-01547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-022-01547-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing