Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transgenic mice for in vivo epigenome editing with CRISPR-based systems

Abstract

CRISPR-Cas9 technologies have dramatically increased the ease of targeting DNA sequences in the genomes of living systems. The fusion of chromatin-modifying domains to nuclease-deactivated Cas9 (dCas9) has enabled targeted epigenome editing in both cultured cells and animal models. However, delivering large dCas9 fusion proteins to target cells and tissues is an obstacle to the widespread adoption of these tools for in vivo studies. Here, we describe the generation and characterization of two conditional transgenic mouse lines for epigenome editing, Rosa26:LSL-dCas9-p300 for gene activation and Rosa26:LSL-dCas9-KRAB for gene repression. By targeting the guide RNAs to transcriptional start sites or distal enhancer elements, we demonstrate regulation of target genes and corresponding changes to epigenetic states and downstream phenotypes in the brain and liver in vivo, and in T cells and fibroblasts ex vivo. These mouse lines are convenient and valuable tools for facile, temporally controlled, and tissue-restricted epigenome editing and manipulation of gene expression in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AAV-based gRNA and Cre recombinase delivery to Rosa26:LSL-dCas9p300 mice activates Pdx1 gene expression and catalyzes targeted histone acetylation.
Fig. 2: Epigenomic enhancement of Fos in vivo increases excitability in CA1 neurons.
Fig. 3: AAV-based gRNA and Cre recombinase delivery to Rosa26:LSL-dCas9KRAB mice represses Pcsk9 and catalyzes targeted histone methylation.
Fig. 4: Epigenome editing in T cells for activation and repression of Foxp3.

Similar content being viewed by others

Data availability

Raw sequencing files are available from the NCBI Gene Expression Omnibus via SuperSeries accession GSE146848. Source data are provided with this paper.

Code availability

Data processing and analysis code is made available through Zenodo80 and on GitHub (https://github.com/ReddyLab/gemberling-et-al-NMETH-A42509C).

References

  1. Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127–137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stepper, P. et al. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res. 45, 1703–1713 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Yeo, N. C. et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thakore, P. I. et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carpenter, M. D. et al. Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes. Nat. Commun. 11, 504 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, L. F. et al. Enhancer histone acetylation modulates transcriptional bursting dynamics of neuronal activity-inducible genes. Cell Rep. 26, 1174–1188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frank, C. L. et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat. Neurosci. 18, 647–656 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Black, J. B. et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19, 406–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, Y. et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23, 758–771 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weltner, J. et al. Human pluripotent reprogramming with CRISPR activators. Nat. Commun. 9, 2643 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Liu, P., Chen, M., Liu, Y., Qi, L. S. & Ding, S. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 22, 252–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Chakraborty, S. et al. A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep. 3, 940–947 (2014).

    Article  CAS  Google Scholar 

  21. Thakore, P. I. et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat. Commun. 9, 1674 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Klann, T. S. et al. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35, 561–568 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fulco, C. P. et al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science 354, 769–773 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liao, H. K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, H. et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci. 21, 440–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Wangensteen, K. J. et al. Combinatorial genetics in liver repopulation and carcinogenesis with an in vivo CRISPR activation platform. Hepatology 68, 663–676 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Li, K. et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun. 11, 485 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nelson, C. E. et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, A. et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas. Mol. Ther. 28, 1432–1441 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moreno, A. M. et al. Immune-orthogonal orthologues of AAV capsids and of Cas9 circumvent the immune response to the administration of gene therapy. Nat. Biomed. Eng. 3, 806–816 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ferdosi, S. R. et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat. Commun. 10, 1842 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ferber, S. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6, 568–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Tang, D. Q. et al. Reprogramming liver-stem WB cells into functional insulin-producing cells by persistent expression of Pdx1- and Pdx1-VP16 mediated by lentiviral vectors. Lab. Invest. 86, 83–93 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, T. et al. Chemically controlled epigenome editing through an inducible dCas9 system. J. Am. Chem. Soc. 139, 11337–11340 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, X. et al. A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat. Commun. 9, 2949 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang, A. S. et al. The histone chaperone FACT induces Cas9 multi-turnover behavior and modifies genome manipulation in human cells. Mol. Cell 79, 221–233 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Guo, L. et al. A combination strategy targeting enhancer plasticity exerts synergistic lethality against BETi-resistant leukemia cells. Nat. Commun. 11, 740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, D. W. et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem. 282, 18602–18612 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+ CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Okada, M., Kanamori, M., Someya, K., Nakatsukasa, H. & Yoshimura, A. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Epigenetics Chromatin 10, 24 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Galonska, C. et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat. Commun. 9, 597 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33, 102–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Springer, M. L., Rando, T. A. & Blau, H. M. Gene delivery to muscle. Curr. Protoc. Hum. Genet. Chapter 13, Unit13.4 (2002).

  61. Salmon, P. & Trono, D. Production and titration of lentiviral vectors. Curr. Protoc. Neurosci. Chapter 4, Unit 4.21 (2006).

  62. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Stephens, M. False discovery rates: a new deal. Biostatistics 18, 275–294 (2017).

    PubMed  Google Scholar 

  69. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Savic, D., Gertz, J., Jain, P., Cooper, G. M. & Myers, R. M. Mapping genome-wide transcription factor binding sites in frozen tissues. Epigenetics Chromatin 6, 30 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Haribhai, D. et al. Regulatory T cells dynamically control the primary immune response to foreign antigen. J. Immunol. 178, 2961–2972 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Barrera, A. ReddyLab/gemberling-et-al-NMETH-A42509C: NMETH-A42509C-v1.0. (2021). https://doi.org/10.5281/zenodo.4777237

Download references

Acknowledgements

We thank J. Deng and B. Ryu for assistance with viral injections, and K. Franks for his support in performing the electrophysiology recordings. This work has been supported by the Allen Distinguished Investigator Program through The Paul G. Allen Frontiers Group to C.A.G., Translating Duke Health Initiative to K.D.P., Open Philanthropy to C.A.G., National Institutes of Health (NIH) grants R33DA041878 to A.E.W. and C.A.G., R01DA036865 to C.A.G., U01AI146356 to C.A.G., UM1HG009428 to T.E.R., M.C. and C.A.G., UG3AR075336 to A.A., and R01GM115474 to M.C., National Science Foundation (NSF) grant EFMA-1830957 to C.A.G., Defense Advanced Research Projects Agency (DARPA) grant HR0011-19-2-0008 to C.A.G., a Pfizer-NCBiotech Distinguished Postdoctoral Fellowship in Gene Therapy to J.C.B., and a Swiss National Science Foundation Postdoctoral Fellowship to V.C.

Author information

Authors and Affiliations

Authors

Contributions

M.P.G., K.S., E.R., K.R.T.-E., F.L., A.K., V.C., M.F.H., L.C.B., C.A.W. and J.C.B. conducted experiments and analyzed data. H.D., D.C.R. and L.L. assisted with the mouse experiments. A.B. and K.S. performed ChIP-Seq and RNA-seq analysis. M.P.G., K.S., A.E.W. and C.A.G. wrote portions of the paper. I.B.H. provided critical reagents. V.J.M. and A.A. produced AAV9 for the mouse experiments. M.C., K.D.P., T.E.R., A.E.W. and C.A.G. provided guidance on the experimental design and interpretation of results. All authors edited the text.

Corresponding author

Correspondence to Charles A. Gersbach.

Ethics declarations

Competing interests

C.A.G., I.B.H. and T.E.R. have filed patent applications related to CRISPR technologies for genome engineering. C.A.G. is an advisor to Tune Therapeutics, Sarepta Therapeutics, Levo Therapeutics and Iveric Bio, and a co-founder of Tune Therapeutics, Element Genomics and Locus Biosciences. A.A. is a co-founder of and advisor to StrideBio and TorqueBio. T.E.R. is a co-founder of Element Genomics. M.P.G. is a co-founder and employee of Tune Therapeutics. All other authors have no competing interests.

Additional information

Peer review information Nature Methods thanks Randall J. Platt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Madhura Mukhopadhyay was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13.

Reporting Summary

Supplementary Table 1

Sequences for CRISPR protospacers, RT–qPCR primers and ChIP-qPCR primers

Supplementary Data 1

Statistical source data for Supplementary Fig. 2

Supplementary Data 2

Statistical source data for Supplementary Fig. 7

Supplementary Data 3

Statistical source data for Supplementary Fig. 8

Supplementary Data 4

Statistical source data for Supplementary Fig. 12

Supplementary Data 5

Unprocessed western blot for Supplementary Fig. 1A

Supplementary Data 6

Unprocessed western blot for Supplementary Fig. 1B

Supplementary Data 7

Unprocessed western blot for Supplementary Fig. 7D

Source data

Source Data Fig. 1

Statistical source data

Source Data Fig. 2

Statistical source data

Source Data Fig. 3

Statistical source data

Source Data Fig. 4

Statistical source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gemberling, M.P., Siklenka, K., Rodriguez, E. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat Methods 18, 965–974 (2021). https://doi.org/10.1038/s41592-021-01207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-021-01207-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research