Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice

Abstract

The advent of genetically encoded calcium indicators, along with surgical preparations such as thinned skulls or refractive-index-matched skulls, has enabled mesoscale cortical activity imaging in head-fixed mice. However, neural activity during unrestrained behavior substantially differs from neural activity in head-fixed animals. For whole-cortex imaging in freely behaving mice, we present the ‘mini-mScope’, a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the mini-mScope can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The mini-mScope: a miniaturized head-mounted microscope for whole-cortex mesoscale activity mapping in freely behaving mice.
Fig. 2: Comparison of calcium dynamics imaged with the mini-mScope to conventional widefield epifluorescence macroscope.
Fig. 3: Sensory stimulus-evoked responses imaged by the mini-mScope.
Fig. 4: Mesoscale imaging of the cortex during free and social behavior.
Fig. 5: Combined electrophysiological recording and mesoscale imaging of brain activity during wakefulness and sleep.

Similar content being viewed by others

Data availability

Data containing videos, pseudocolor maps and images are available upon request from the authors due to the large file sizes. The Allen Brain Atlas was used as an anatomical reference for data analysis in this study (http://www.brain-map.org). All CAD files for manufacturing the mini-mScope are available with this article as Supplementary Data 2. Source data are provided with this paper.

Code availability

All custom code is available on Github at https://github.com/bsbrl/mini-mScope.

References

  1. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Daigle, T. L. et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465–480.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vanni, M. P. & Murphy, T. H. Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex. J. Neurosci. 34, 15931–15946 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94, 891–907.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wekselblatt, J. B., Flister, E. D., Piscopo, D. M. & Niell, C. M. Large-scale imaging of cortical dynamics during sensory perception and behavior. J. Neurophysiol. 115, 2852–2866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Makino, H. et al. Transformation of cortex-wide emergent properties during motor learning. Neuron 94, 880–890.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gilad, A. & Helmchen, F. Spatiotemporal refinement of signal flow through association cortex during learning. Nat. Commun. 11, 1744 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohajerani, M. H. et al. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat. Neurosci. 16, 1426–1435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferezou, I. et al. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56, 907–923 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Pinto, L. et al. Task-dependent changes in the large-scale dynamics and necessity of cortical regions. Neuron 104, 810–824.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murphy, T. H. et al. High-throughput automated home-cage mesoscopic functional imaging of mouse cortex. Nat. Commun. 7, 11611 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer, A. F., O’Keefe, J. & Poort, J. Two distinct types of eye-head coupling in freely moving mice. Curr. Biol. 30, 2116–2130.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Juczewski, K., Koussa, J. A., Kesner, A. J., Lee, J. O. & Lovinger, D. M. Stress and behavioral correlates in the head-fixed method: stress measurements, habituation dynamics, locomotion, and motor-skill learning in mice. Sci. Rep. 10, 12245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aghajan, Z. M. et al. Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality. Nat. Neurosci. 18, 121–128 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713–719 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Skocek, O. et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. Nat. Methods 15, 429–432 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scott, B. B. et al. Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope. Neuron 100, 1045–1058.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Namiki, S., Sakamoto, H., Iinuma, S., Iino, M. & Hirose, K. Optical glutamate sensor for spatiotemporal analysis of synaptic transmission. Eur. J. Neurosci. 25, 2249–2259 (2007).

    Article  PubMed  Google Scholar 

  22. Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dana, H. et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS ONE 9, e108697 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ghanbari, L. et al. Cortex-wide neural interfacing via transparent polymer skulls. Nat. Commun. 10, 1500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, Y. et al. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons. Proc. Natl Acad. Sci. USA 113, E8463–E8471 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dubbs, A., Guevara, J. & Yuste, R. moco: fast motion correction for calcium imaging. Front. Neuroinform. 10, 6 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dash, M. B., Douglas, C. L., Vyazovskiy, V. V., Cirelli, C. & Tononi, G. Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J. Neurosci. 29, 620–629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abadchi, J. K. et al. Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples. Elife 9, e51972 (2020).

    Article  CAS  Google Scholar 

  29. Patti, C. L. et al. Effects of sleep deprivation on memory in mice: role of state-dependent learning. Sleep 33, 1669–1679 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Colavito, V. et al. Experimental sleep deprivation as a tool to test memory deficits in rodents. Front. Syst. Neurosci. 7, 106 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mohajerani, M. H., McVea, D. A., Fingas, M. & Murphy, T. H. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J. Neurosci. 30, 3745–3751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, P. et al. Measuring sharp waves and oscillatory population activity with the genetically encoded calcium indicator GCaMP6f. Front. Cell. Neurosci. 13, 274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dawson, T. M., Golde, T. E. & Lagier-Tourenne, C. Animal models of neurodegenerative diseases. Nat. Neurosci. 21, 1370–1379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Juneau, J., Duret, G., Robinson, J. & Kemere, C. Enhanced image sensor module for head-mounted microscopes. In Proc. Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC) 826–829 (IEEE, 2018).

  38. Barbera, G., Liang, B., Zhang, L., Li, Y. & Lin, D.-T. A wireless miniScope for deep brain imaging in freely moving mice. J. Neurosci. Methods 323, 56–60 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Valley, M. T. et al. Separation of hemodynamic signals from GCaMP fluorescence measured with wide-field imaging. J. Neurophysiol. 123, 356–366 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. Elife 5, e12727 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Donaldson, P. D., Ghanbari, L., Rynes, M. L., Kodandaramaiah, S. B. & Swisher, S. L. Inkjet-printed silver electrode array for in-vivo electrocorticography. In Proc. Int. IEEE/EMBS Conf. Neural Engineering (NER) 774–777 (IEEE, 2019).

  43. Ghanbari, L. et al. Craniobot: a computer numerical controlled robot for cranial microsurgeries. Sci. Rep. 9, 1023 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Rynes, M. L. et al. Assembly and operation of an open-source, computer numerical controlled (CNC) robot for performing cranial microsurgical procedures. Nat. Protoc. 15, 1992–2023 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Silasi, G., Xiao, D., Vanni, M. P., Chen, A. C. N. & Murphy, T. H. Intact skull chronic windows for mesoscopic wide-field imaging in awake mice. J. Neurosci. Methods 267, 141–149 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pinheiro-da-Silva, J., Silva, P. F., Nogueira, M. B. & Luchiari, A. C. Sleep deprivation effects on object discrimination task in zebrafish (Danio rerio). Anim. Cogn. 20, 159–169 (2017).

    Article  PubMed  Google Scholar 

  47. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

  49. Lau, C. et al. Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics 9, 153 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Singh, S., Bermudez-Contreras, E., Nazari, M., Sutherland, R. J. & Mohajerani, M. H. Low-cost solution for rodent home-cage behaviour monitoring. PLoS ONE 14, e0220751 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.B.K. acknowledges funds from the Mechanical Engineering Department, College of Science and Engineering, MnDRIVE RSAM initiative of the University of Minnesota, Minnesota Department of Higher Education and National Institutes of Health grant nos. 1R21NS103098-01, 1R01NS111028, 1R21NS112886, RF1NS113287 and 1R21NS111196. L.G. was supported by the University of Minnesota Informatics Institute graduate fellowship. D.A.S. was supported by the University of Minnesota Diversity of Views and Experiences fellowship. M.L.R. was supported by grant no. 1R21NS103098-01-01S1. M.H.M. acknowledges funding from Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant #40352.

Author information

Authors and Affiliations

Authors

Contributions

M.L.R., L.G., M.L., D.A.S., L.G., G.W.J. and S.B.K. designed and engineered the mini-mScope. M.L.R., D.A.S., J.D., Z.S.N., O.H., L.G. and S.B.K. designed and executed the experiments. M.L.R., D.A.S., S.L., O.H., V.R. and S.B.K. analyzed the data. M.L.R., D.A.S., S.L., V.R., J.D., M.L. and S.B.K. wrote the manuscript. M.N. and M.H.M. designed and executed the glutamate imaging experiments, analyzed the data and assisted with manuscript writing.

Corresponding author

Correspondence to Suhasa B. Kodandaramaiah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Notes 1–7.

Reporting Summary

Supplementary Data 1

Source data for supplementary figures.

Supplementary Video 1

Open field behavior of mouse bearing the mini-mScope. Video depicting a mouse bearing a mini-mScope behaving freely in an open field arena. The mouse is free and comfortable to move throughout the entire arena and rear against the arena walls. The mouse appears undeterred by the mini-mScope or its associated wiring.

Supplementary Video 2

Stability of mesoscale imaging using the mini-mScope during freely moving behavior. Video with top view of mouse moving around in the open field. Epochs of 5–10 s of different behaviors are shown (locomotion, grooming and rearing). Inset: Motion-corrected video of the corresponding cortical calcium dynamics as captured by the mini-mScope.

Supplementary Video 3

Mesoscale calcium dynamics during social behavior. Video with top view of two mice moving around in the open field. Epochs of 10–15 s of different behaviors are shown (no contact and contact). Inset: Motion-corrected video of the corresponding cortical calcium dynamics as captured by the mini-mScope.

Supplementary Data 2

ZIP file containing three main elements. The first is a folder containing the CAD design files. The second is a folder containing the PCB design files. The third is an Excel sheet (Supplementary_File_1.xlsx) containing a master parts list.

Source data

Source Data Fig. 1

Mini-mScope resolution and illumination testing data.

Source Data Fig. 2

Data used to compare the calcium dynamics imaged with the mini-mScope to a conventional widefield epifluorescence macroscope.

Source Data Fig. 3

Data for the sensory stimulus-evoked responses imaged by the mini-mScope.

Source Data Fig. 4

Data for the mesoscale imaging of the cortex during free behavior taken with the mini-mScope.

Source Data Fig. 5

Data for the combined electrophysiological recording and mesoscale imaging of brain activity during sleep recorded with the mini-mScope.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rynes, M.L., Surinach, D.A., Linn, S. et al. Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice. Nat Methods 18, 417–425 (2021). https://doi.org/10.1038/s41592-021-01104-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-021-01104-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing