Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncovering axes of variation among single-cell cancer specimens

Abstract

While several tools have been developed to map axes of variation among individual cells, no analogous approaches exist for identifying axes of variation among multicellular biospecimens profiled at single-cell resolution. For this purpose, we developed ‘phenotypic earth mover’s distance’ (PhEMD). PhEMD is a general method for embedding a ‘manifold of manifolds’, in which each datapoint in the higher-level manifold (of biospecimens) represents a collection of points that span a lower-level manifold (of cells). We apply PhEMD to a newly generated drug-screen dataset and demonstrate that PhEMD uncovers axes of cell subpopulational variation among a large set of perturbation conditions. Moreover, we show that PhEMD can be used to infer the phenotypes of biospecimens not directly profiled. Applied to clinical datasets, PhEMD generates a map of the patient-state space that highlights sources of patient-to-patient variation. PhEMD is scalable, compatible with leading batch-effect correction techniques and generalizable to multiple experimental designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The PhEMD approach.
Fig. 2: Experimental design for measuring perturbation effects of small-molecule inhibitors on EMT.
Fig. 3: Axes of variation among EMT perturbation conditions.
Fig. 4: Nyström extension predicts single-cell profiles of unmeasured EMT perturbation conditions.
Fig. 5: PhEMD applied to single-cell RNA-seq data of 17 melanoma samples (nontumor cells only) highlights heterogeneous immune profiles among different patients.
Fig. 6: PhEMD applied to mass cytometry data of 75 ccRCC samples gated for T cells.

Similar content being viewed by others

Data availability

The mass cytometry data that support the findings of this study are available at https://community.cytobank.org/cytobank/projects/1296. Source data for Figs. 3–6 are provided with the paper. Any additional data supporting the findings of this study are available from the corresponding author upon request.

Code availability

PhEMD takes as input a list of \(N\) matrices representing \(N\) single-cell specimens. An R implementation of PhEMD is publicly available as a Bioconductor R package (package name: ‘phemd’) and can alternatively be downloaded from https://github.com/wschen/phemd. Note that the cell-state space for all analyses presented in this manuscript was modeled using the PHATE method8. However, alternative approaches are viable and we have provided support for PHATE, Monocle2 (ref. 41) and Louvain community detection (as implemented in the Seurat software package)16 for this purpose in the R package.

References

  1. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nature Biotech. 30, 858–867 (2012).

    Article  CAS  Google Scholar 

  2. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ribas, A. et al. Pd-1 blockade expands intratumoral memory t cells. Cancer Immunol. Res. 4, 194–203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Behbehani, G. K. et al. Mass cytometric functional profiling of acute myeloid leukemia defines cell-cycle and immunophenotypic properties that correlate with known responses to therapy. Cancer Disc. 5, 988–1003 (2015).

    Article  CAS  Google Scholar 

  7. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390.e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moon, K. R. et al. Visualizing transitions and structure for high-dimensional data exploration. Nat. Biotechnol. 37, 1482–1492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rubner, Y., Tomasi, C. & Guibas, L. J. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000).

    Article  Google Scholar 

  12. Coifman, R. R. & Lafon, S. Diffusion maps. Appl. Comput. Harm. Anal. 21, 5–30 (2006).

    Article  Google Scholar 

  13. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alpert, A., Moore, L. S., Dubovik, T. & Shen-Orr, S. S. Alignment of single-cell trajectories to compare cellular expression dynamics. Nat. Methods 15, 267–270 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Q. et al. Quantitative assessment of cell population diversity in single-cell landscapes. PLoS Biol. 16, e2006687 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotech. 36, 411–420 (2018).

    Article  CAS  Google Scholar 

  17. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu, H. et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24, 928–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. L Ramos, T. et al. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun. Signal. 14, 2 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ivaska, J., Pallari, H.-M., Nevo, J. & Eriksson, J. E. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313, 2050–2062 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Li, W. et al. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci. Rep. 7, 13856 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma, F. et al. Enriched CD44(+)/CD24(-) population drives the aggressive phenotypes presented in triple-negative breast cancer (TNBC). Cancer Lett. 353, 153–159 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Ricardo, S. et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J. Clin. Pathol. 64, 937–946 (2011).

    Article  PubMed  Google Scholar 

  24. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nieto, M., Huang, R.-J., Jackson, R. & Thiery, J. EMT: 2016. Cell 166, 21–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Jolly, M. K. et al. Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front. Oncol. 5, 155 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Elkabets, M. et al. Mtorc1 inhibition is required for sensitivity to pi3k p110Îś inhibitors in pik3ca-mutant breast cancer. Sci. Trans. Med. 5, 196ra99 (2013).

    Article  CAS  Google Scholar 

  28. Salhov, M., Bermanis, A., Wolf, G. & Averbuch, A. Approximately-isometric diffusion maps. Appl. Comput. Harm. Anal. 38, 399–419 (2015).

    Article  Google Scholar 

  29. Klaeger, S. et al. The target landscape of clinical kinase drugs. Science 358, eaan4368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bengio, Y. et al. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. In Proc. 16th International Conference on Neural Information Processing Systems, NIPS 2003, 177–184 (MIT Press, 2003).

  31. Fowlkes, C., Belongie, S., Chung, F. & Malik, J. Spectral grouping using the Nyström method. EEE Trans. Pattern Anal. Mach. Intell. 26, 214–225 (2004).

    Article  Google Scholar 

  32. Williams, C.K.I. & Seeger, M. in Advances in Neural Information Processing Systems Vol. 13 (eds Leen, T. K. et al.) 682–688 (MIT Press, 2001).

  33. Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moon, K. R. et al. Manifold learning-based methods for analyzing single-cell RNA-sequencing data. Curr. Opin. Syst. Biol. 7, 36–46 (2018).

    Article  Google Scholar 

  35. Damond, N. et al. A map of human type 1 diabetes progression by imaging mass cytometry. Cell Metab. 29, 755–768.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hammers, H. J. et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the checkmate 016 study. J. Clin. Oncol. 35, 3851–3858 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. New Engl. J. Med. 378, 1277–1290 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Levine, J. et al. Data-driven phenotypic dissection of aml reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nature Biotechnol. 34, 637–645 (2016).

    Article  CAS  Google Scholar 

  40. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sachs, K. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Krishnaswamy, S. et al. Conditional density-based analysis of T cell signaling in single-cell data. Science 346, 1250689–1250689 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, L. L. et al. Critical role of cd2 co-stimulation in adaptive natural killer cell responses revealed in nkg2c-deficient humans. Cell Rep. 15, 1088–1099 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, F. & Guibas, L. in Computer Vision—ECCV 2012 Vol. 7572 (eds Fitzgibbon, A. et al.) 442–455 (Springer, 2012).

  46. Zhao, Q., Yang, Z. & Tao, H. Differential earth mover’s distance with its applications to visual tracking. IEEE Trans. Pattern Ana. Mach. Intel. 32, 274–287 (2010).

    Article  Google Scholar 

  47. Typke, R., Wiering, F. & Veltkamp, R. C. Transportation distances and human perception of melodic similarity. Musicae Scientiae 11, 153–181 (2007).

    Article  Google Scholar 

  48. Orlova, D. Y. et al. Earth mover’s distance (emd): a true metric for comparing biomarker expression levels in cell populations. PLoS ONE 11, e0151859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Courty, N. Flamary, R. & Ducoffe, M. Learning Wasserstein embeddings. Preprint at https://arxiv.org/pdf/1710.07457.pdf (2017).

  50. Waldmeier, L., Meyer-Schaller, N., Diepenbruck, M. & Christofori, G. Py2T murine breast cancer cells, a versatile model of TGFß-induced EMT in vitro and in vivo. PLoS ONE 7, e48651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zunder, E. R. et al. Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat. Protocols 10, 316–333 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Zivanovic, N. Jacobs, A. & Bodenmiller, B. in High-Dimensional Single Cell Analysis Vol. 377 (eds Fienberg, H. G. & Nolan, G. P.) 95–109 (Springer, 2013).

  53. Ornatsky, O. et al. Highly multiparametric analysis by mass cytometry. J. Immunol. Meth. 361, 1–20 (2010).

    Article  CAS  Google Scholar 

  54. Finck, R. et al. Normalization of mass cytometry data with bead standards. Cytometry Part A 83A, 483–494 (2013).

    Article  CAS  Google Scholar 

  55. Levina, E. & Bickel, P.J. in Advances in Neural Information Processing Systems Vol. 17 (eds Saul, L. K. et al.) 777–784 (MIT Press, 2005).

  56. Hino, H. Ider: intrinsic dimension estimation with R. R J. 9, 329–341 (2017).

    Article  Google Scholar 

  57. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Krishnaswamy and Bodenmiller laboratories for fruitful discussions. This study was supported in part by the Chan–Zuckerberg Initiative Seed Networks for the Human Cell Atlas (S.K.), a Swiss National Science Foundation (SNSF) R’Equip grant (B.B.), a SNSF Assistant Professorship grant no. PP00P3-144874 (B.B.), the SystemsX Transfer Project ‘Friends and Foes’ (B.B.), the SystemX grants Metastasix and PhosphoNEtX (B.B.), the European Research Council (ERC) under the European Union’s Seventh Framework Program (no. FP/2007-2013)/ERC Grant Agreement no. 336921 (B.B.), the CRUK IMAXT Grand Challenge (B.B.) and the following National Institutes of Health (NIH) grants: nos. R01GM135929 (S.K. and G.W.), UC4 DK108132 (B.B.) and NIH–NIDDK T35DK104689 (W.S.C.).

Author information

Authors and Affiliations

Authors

Contributions

W.S.C., N.Z., G.W., B.B. and S.K. conceived the study. W.S.C. and S.K. developed the PhEMD algorithm. W.S.C. wrote the software implementation. W.S.C. and D.v.D. performed all computational analyses. N.Z. performed all single-cell profiling experiments and data quality assessments. W.S.C., N.Z., B.B. and S.K. interpreted the results and drafted the manuscript.

Corresponding authors

Correspondence to Bernd Bodenmiller or Smita Krishnaswamy.

Ethics declarations

Competing interests

S.K. is on the scientific advisory board of AI Therapeutics.

Additional information

Peer review information Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Notes 1–7.

Reporting Summary

Supplementary Table 1

List of inhibitors included in EMT drug-screen experiment

Supplementary Table 2

List of antibodies included in EMT drug-screen experiment

Supplementary Table 3

Clusters of inhibitors with similar effects in multiple-batch EMT drug-screen experiment

Supplementary Table 4

Cell yield of each experimental condition in EMT drug-screen experiment

Supplementary Table 5

Subgroups of inhibitors with similar effects in single-batch EMT drug-screen experiment

Supplementary Table 6

Subgroups of biospecimens with similar single-cell profiles in melanoma scRNA-seq expeiment

Supplementary Table 7

Subgroups of biospecimens with similar single-cell profiles in ccRCC mass cytometry expeiment

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W.S., Zivanovic, N., van Dijk, D. et al. Uncovering axes of variation among single-cell cancer specimens. Nat Methods 17, 302–310 (2020). https://doi.org/10.1038/s41592-019-0689-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0689-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer