EcoFABs: advancing microbiome science through standardized fabricated ecosystems

Article metrics

Microbiomes play critical roles in ecosystems and human health, yet in most cases scientists lack standardized and reproducible model microbial communities. The development of fabricated microbial ecosystems, which we term EcoFABs, will provide such model systems for microbiome studies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Vision for fabricated model microbial ecosystems and their impact on microbiome science.
Fig. 2: Two example devices for analysis of microbial interactions.

References

  1. 1.

    Thompson, L. R. et al. Nature 551, 457–463 (2017).

  2. 2.

    Zengler, K. & Zaramela, L. S. Nat. Rev. Microbiol. 16, 383–390 (2018).

  3. 3.

    Muller, B. & Grossniklaus, U. J. Proteomics 73, 2054–2063 (2010).

  4. 4.

    Wimpenny, J. W. T. CRC Handbook of Laboratory Model Systems for Microbial Ecosystems (CRC Press, 1988).

  5. 5.

    Winogradsky, S. Arch. Sci. Biol. 3, 297–352 (1895).

  6. 6.

    Dallinger, W. D. J. R. Microsc. Soc. 7, 184–199 (1887).

  7. 7.

    Gause, G. F. The Struggle for Existence (The Williams & Wilkins Company, 1934).

  8. 8.

    Kolenbrander, P. E. et al. Microbiol. Mol. Biol. R 66, 486–505 (2002).

  9. 9.

    Jessup, C. M. et al. Trends Ecol. Evol. 19, 189–197 (2004).

  10. 10.

    Wolfe, B. E. Msystems 3, 00161-17 (2018).

  11. 11.

    Welch, J. L. M., Hasegawa, Y., McNulty, N. P., Gordon, J. I. & Borisy, G. G. Proc. Natl Acad. Sci. USA 114, E9105–E9114 (2017).

  12. 12.

    Yano, J. M. et al. Cell 161, 264–276 (2015).

  13. 13.

    Turnbaugh, P. J. et al. Nature 444, 1027–1031 (2006).

  14. 14.

    Zhalnina, K., Zengler, K., Newman, D. & Northen, T. R. MBio 9, e01175-18 (2018).

  15. 15.

    Koornneef, M. & Meinke, D. Plant J. 61, 909–921 (2010).

  16. 16.

    Busby, P. E. et al. PLoS Biol. 15, e2001793 (2017).

  17. 17.

    McDonald, J. A. et al. J. Microbiol. Methods 95, 167–174 (2013).

  18. 18.

    Agostinho, A. M. et al. J. Appl. Microbiol. 111, 1275–1282 (2011).

  19. 19.

    Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

  20. 20.

    Cremer, J. et al. Proc. Natl Acad. Sci. USA 113, 11414–11419 (2016).

  21. 21.

    Blaser, M. J. et al. MBio 7, e00714–e00716 (2016).

  22. 22.

    Gao, J. et al. J. Vis. Exp. 134, e57170 (2018).

  23. 23.

    Massalha, H., Korenblum, E., Malitsky, S., Shapiro, O. H. & Aharoni, A. Proc. Natl Acad. Sci. USA 114, 4549–4554 (2017).

  24. 24.

    Toju, H. et al. Nat. Plants 4, 247–257 (2018).

  25. 25.

    Herrera Paredes, S. et al. PLoS Biol. 16, e2003962 (2018).

  26. 26.

    Grossmann, G. et al. Plant Cell 23, 4234–4240 (2011).

  27. 27.

    Lambert, B. S. et al. Nat. Microbiol. 2, 1344–1349 (2017).

  28. 28.

    Handelsman, J. Microb. Biotechnol. 2, 138–139 (2009).

  29. 29.

    Green, J. L., Bohannan, B. J. & Whitaker, R. J. Science 320, 1039–1043 (2008).

  30. 30.

    Little, A. E. F., Robinson, C. J., Peterson, S. B., Raffa, K. E. & Handelsman, J. Annu. Rev. Microbiol. 62, 375–401 (2008).

  31. 31.

    Ruby, E. G. Nat. Rev. Microbiol. 6, 752–762 (2008).

  32. 32.

    Prosser, J. I. et al. Nat. Rev. Microbiol. 5, 384–392 (2007).

  33. 33.

    Sinha, R., Abnet, C. C., White, O., Knight, R. & Huttenhower, C. Genome Biol. 16, 276 (2015).

  34. 34.

    Sasse, J. et al. New Phytol. 222, 1149–1160 (2019).

Download references

Acknowledgements

Material is based on work supported by the National Science Foundation under grants 1332344 and 1804187 (to K.Z.), the Trial Ecosystem Advancement for Microbiome Science and the Microbial Community Analysis and Functional Evaluation in Soils Programs at Lawrence Berkeley National Laboratory by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research Awards DE-AC02-05CH11231 (to T.R.N.), DE‐SC0018277 (to J.R.D.) and DE-SC0012658, DE-SC0012586, DE-SC00138344 (to K.Z.), DE-SC0013887 (to E.A.S.), the Center for Bioenergy Innovation (CBI), DE-AC05-000R22725 (to C.M.), by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research under contract DE-AC05-76RL01830 with Pacific Northwest National Laboratory through the iPASS and PREMIS Initiatives (to C.J.), and the Strategic Planning Support Activities Program of Lawrence Berkeley National Laboratory (to T.R.N.). Work at Lawrence Livermore National Laboratory (J.P.R.) was conducted under the auspices of Contract DE-AC52-07NA27344 and SCW1039. We thank P. Kim and Z. Rostomian for assistance in figure preparation, and D. Gilbert and J. Tanamachi for helpful comments.

Author information

T.R.N. and K.Z. created the draft manuscript. All authors contributed substantially to the draft manuscript, including editing to incorporate diverse expertise and research perspectives. K.Z. and T.R.N. prepared the final text and figures.

Correspondence to Trent R. Northen.

Ethics declarations

Competing interests

T.R.N. is an inventor on a related patent application (US 15/963,887). M.D.W. is a founder and shareholder of Growcentia, Inc.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading