Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

EcoFABs: advancing microbiome science through standardized fabricated ecosystems

Microbiomes play critical roles in ecosystems and human health, yet in most cases scientists lack standardized and reproducible model microbial communities. The development of fabricated microbial ecosystems, which we term EcoFABs, will provide such model systems for microbiome studies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vision for fabricated model microbial ecosystems and their impact on microbiome science.
Fig. 2: Two example devices for analysis of microbial interactions.

References

  1. Thompson, L. R. et al. Nature 551, 457–463 (2017).

    Article  CAS  Google Scholar 

  2. Zengler, K. & Zaramela, L. S. Nat. Rev. Microbiol. 16, 383–390 (2018).

    Article  CAS  Google Scholar 

  3. Muller, B. & Grossniklaus, U. J. Proteomics 73, 2054–2063 (2010).

    Article  Google Scholar 

  4. Wimpenny, J. W. T. CRC Handbook of Laboratory Model Systems for Microbial Ecosystems (CRC Press, 1988).

  5. Winogradsky, S. Arch. Sci. Biol. 3, 297–352 (1895).

    CAS  Google Scholar 

  6. Dallinger, W. D. J. R. Microsc. Soc. 7, 184–199 (1887).

    Article  Google Scholar 

  7. Gause, G. F. The Struggle for Existence (The Williams & Wilkins Company, 1934).

  8. Kolenbrander, P. E. et al. Microbiol. Mol. Biol. R 66, 486–505 (2002).

    Article  CAS  Google Scholar 

  9. Jessup, C. M. et al. Trends Ecol. Evol. 19, 189–197 (2004).

    Article  Google Scholar 

  10. Wolfe, B. E. Msystems 3, 00161-17 (2018).

  11. Welch, J. L. M., Hasegawa, Y., McNulty, N. P., Gordon, J. I. & Borisy, G. G. Proc. Natl Acad. Sci. USA 114, E9105–E9114 (2017).

    Article  Google Scholar 

  12. Yano, J. M. et al. Cell 161, 264–276 (2015).

    Article  CAS  Google Scholar 

  13. Turnbaugh, P. J. et al. Nature 444, 1027–1031 (2006).

    Article  Google Scholar 

  14. Zhalnina, K., Zengler, K., Newman, D. & Northen, T. R. MBio 9, e01175-18 (2018).

  15. Koornneef, M. & Meinke, D. Plant J. 61, 909–921 (2010).

    Article  CAS  Google Scholar 

  16. Busby, P. E. et al. PLoS Biol. 15, e2001793 (2017).

    Article  Google Scholar 

  17. McDonald, J. A. et al. J. Microbiol. Methods 95, 167–174 (2013).

  18. Agostinho, A. M. et al. J. Appl. Microbiol. 111, 1275–1282 (2011).

    Article  CAS  Google Scholar 

  19. Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    Article  CAS  Google Scholar 

  20. Cremer, J. et al. Proc. Natl Acad. Sci. USA 113, 11414–11419 (2016).

    Article  CAS  Google Scholar 

  21. Blaser, M. J. et al. MBio 7, e00714–e00716 (2016).

    Article  CAS  Google Scholar 

  22. Gao, J. et al. J. Vis. Exp. 134, e57170 (2018).

    Google Scholar 

  23. Massalha, H., Korenblum, E., Malitsky, S., Shapiro, O. H. & Aharoni, A. Proc. Natl Acad. Sci. USA 114, 4549–4554 (2017).

    Article  CAS  Google Scholar 

  24. Toju, H. et al. Nat. Plants 4, 247–257 (2018).

    Article  Google Scholar 

  25. Herrera Paredes, S. et al. PLoS Biol. 16, e2003962 (2018).

    Article  Google Scholar 

  26. Grossmann, G. et al. Plant Cell 23, 4234–4240 (2011).

    Article  CAS  Google Scholar 

  27. Lambert, B. S. et al. Nat. Microbiol. 2, 1344–1349 (2017).

    Article  CAS  Google Scholar 

  28. Handelsman, J. Microb. Biotechnol. 2, 138–139 (2009).

    Article  Google Scholar 

  29. Green, J. L., Bohannan, B. J. & Whitaker, R. J. Science 320, 1039–1043 (2008).

    Article  CAS  Google Scholar 

  30. Little, A. E. F., Robinson, C. J., Peterson, S. B., Raffa, K. E. & Handelsman, J. Annu. Rev. Microbiol. 62, 375–401 (2008).

    Article  CAS  Google Scholar 

  31. Ruby, E. G. Nat. Rev. Microbiol. 6, 752–762 (2008).

    Article  CAS  Google Scholar 

  32. Prosser, J. I. et al. Nat. Rev. Microbiol. 5, 384–392 (2007).

    Article  CAS  Google Scholar 

  33. Sinha, R., Abnet, C. C., White, O., Knight, R. & Huttenhower, C. Genome Biol. 16, 276 (2015).

    Article  Google Scholar 

  34. Sasse, J. et al. New Phytol. 222, 1149–1160 (2019).

Download references

Acknowledgements

Material is based on work supported by the National Science Foundation under grants 1332344 and 1804187 (to K.Z.), the Trial Ecosystem Advancement for Microbiome Science and the Microbial Community Analysis and Functional Evaluation in Soils Programs at Lawrence Berkeley National Laboratory by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research Awards DE-AC02-05CH11231 (to T.R.N.), DE‐SC0018277 (to J.R.D.) and DE-SC0012658, DE-SC0012586, DE-SC00138344 (to K.Z.), DE-SC0013887 (to E.A.S.), the Center for Bioenergy Innovation (CBI), DE-AC05-000R22725 (to C.M.), by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research under contract DE-AC05-76RL01830 with Pacific Northwest National Laboratory through the iPASS and PREMIS Initiatives (to C.J.), and the Strategic Planning Support Activities Program of Lawrence Berkeley National Laboratory (to T.R.N.). Work at Lawrence Livermore National Laboratory (J.P.R.) was conducted under the auspices of Contract DE-AC52-07NA27344 and SCW1039. We thank P. Kim and Z. Rostomian for assistance in figure preparation, and D. Gilbert and J. Tanamachi for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

T.R.N. and K.Z. created the draft manuscript. All authors contributed substantially to the draft manuscript, including editing to incorporate diverse expertise and research perspectives. K.Z. and T.R.N. prepared the final text and figures.

Corresponding author

Correspondence to Trent R. Northen.

Ethics declarations

Competing interests

T.R.N. is an inventor on a related patent application (US 15/963,887). M.D.W. is a founder and shareholder of Growcentia, Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zengler, K., Hofmockel, K., Baliga, N.S. et al. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat Methods 16, 567–571 (2019). https://doi.org/10.1038/s41592-019-0465-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0465-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology