Single-DNA electron spin resonance spectroscopy in aqueous solutions

Abstract

Magnetic resonance spectroscopy of single biomolecules under near-physiological conditions could substantially advance understanding of their biological function, but this approach remains very challenging. Here we used nitrogen-vacancy centers in diamonds to detect electron spin resonance spectra of individual, tethered DNA duplexes labeled with a nitroxide spin label in aqueous buffer solutions at ambient temperatures. This work paves the way for magnetic resonance studies on single biomolecules and their intermolecular interactions in native-like environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental setup.
Fig. 2: ESR spectra detected at single-molecule and bulk levels.

Change history

  • 14 August 2018

    In the version of this paper originally published online, the ORCID ID for Peter Z. Qin was incorrectly assigned to Zhuoyang Qin. In addition, the ORCID for Fazhan Shi was omitted. These errors have been corrected in the print, PDF, and HTML versions of the paper.

References

  1. 1.

    Wrachtrup, J. & Finkler, A. J. Magn. Reson. 269, 225–236 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Balasubramanian, G. et al. Nature 455, 648–651 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Maze, J. R. et al. Nature 455, 644–647 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Degen, C. L., Reinhard, F. & Cappellaro, P. Rev. Mod. Phys. 89, 035002 (2017).

    Article  Google Scholar 

  5. 5.

    Shi, F. et al. Science 347, 1135–1138 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Shi, F. et al. Phys. Rev. B 87, 195414 (2013).

    Article  Google Scholar 

  7. 7.

    Grinolds, M. S. et al. Nat. Phys. 9, 215–219 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Grinolds, M. S. et al. Nat. Nanotechnol. 9, 279–284 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Grotz, B. et al. New J. Phys. 13, 055004 (2011).

    Article  Google Scholar 

  10. 10.

    Sushkov, A. O. et al. Nano Lett. 14, 6443–6448 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Schlipf, L. et al. Sci. Adv. 3, e1701116 (2017).

    Article  Google Scholar 

  12. 12.

    Lovchinsky, I. et al. Science 351, 836–841 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Tangprasertchai, N. S. et al. Methods Enzymol. 564, 427–453 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Kurad, D., Jeschke, G. & Marsh, D. Biophys. J. 85, 1025–1033 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    Akiel, R. D. et al. J. Phys. Chem. B 120, 4003–4008 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Zhuang, X. et al. Science 288, 2048–2051 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Nature 430, 329–332 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    Pezzagna, S. et al. New J. Phys. 12, 065017 (2010).

    Article  Google Scholar 

  19. 19.

    Hausmann, B. J. M. et al. New J. Phys. 13, 045004 (2011).

    Article  Google Scholar 

  20. 20.

    Qin, P. Z. et al. Nat. Protoc. 2, 2354–2365 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, X., Cekan, P., Sigurdsson, S. T. & Qin, P. Z. Methods Enzymol. 469, 303–328 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China (grant 2016YFA0502400 to F.S.; grant 2018YFA0306600 to J.D.), the National Natural Science Foundation of China (grants 81788104, 11227901, and 11761131011 to J.D.; grants 31470835, 91636217, and 11722544 to F.S.; grant 21328101 to P.Z.Q.), CAS (grants XDB01030400 and QYZDY-SSW-SLH004 to J.D.; grant YIPA2015370 to F.S.), the CEBioM (F.S.), the Fundamental Research Funds for the Central Universities (grant WK2340000064 to F.S.; grant WK2030040088 to P.W.), the China Postdoctoral Science Foundation (grant BX20180294 to F.K.; grants BX201700230 and 2017M622001 to Q.Z.) and the US National Science Foundation (grants CHE-1213673, MCB-1716744, and MCB-1818107 to P.Z.Q.).

Author information

Affiliations

Authors

Contributions

J.D. supervised the entire project. J.D., F.S., and P.Z.Q. designed the experiments. F.K., P.Z., and F.S. performed the experiments. X.Z. and P.Z.Q. prepared the DNA duplex. X.Z., M.C., X.R., J.S., and P.Z.Q. measured the ensemble data. P.Z., M.C., Z.W., S.C., and P.Z.Q. carried out the chemical bonding process. M.W., X.Y., and P.W. fabricated the pillar and conducted atomic force microscopy imaging. Q.Z. tested the coherence of NVs. F.K. and Z.Q. performed calculations. F.S., F.K., P.Z., P.Z.Q., and J.D. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Peter Z. Qin or Jiangfeng Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Kong, F., Zhao, P. et al. Single-DNA electron spin resonance spectroscopy in aqueous solutions. Nat Methods 15, 697–699 (2018). https://doi.org/10.1038/s41592-018-0084-1

Download citation

Further reading