Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A multi-ancestry genetic study of pain intensity in 598,339 veterans

Subjects

Abstract

Chronic pain is a common problem, with more than one-fifth of adult Americans reporting pain daily or on most days. It adversely affects the quality of life and imposes substantial personal and economic costs. Efforts to treat chronic pain using opioids had a central role in precipitating the opioid crisis. Despite an estimated heritability of 25–50%, the genetic architecture of chronic pain is not well-characterized, in part because studies have largely been limited to samples of European ancestry. To help address this knowledge gap, we conducted a cross-ancestry meta-analysis of pain intensity in 598,339 participants in the Million Veteran Program, which identified 126 independent genetic loci, 69 of which are new. Pain intensity was genetically correlated with other pain phenotypes, level of substance use and substance use disorders, other psychiatric traits, education level and cognitive traits. Integration of the genome-wide association studies findings with functional genomics data shows enrichment for putatively causal genes (n = 142) and proteins (n = 14) expressed in brain tissues, specifically in GABAergic neurons. Drug repurposing analysis identified anticonvulsants, β-blockers and calcium-channel blockers, among other drug groups, as having potential analgesic effects. Our results provide insights into key molecular contributors to the experience of pain and highlight attractive drug targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plot for the pain intensity cross-ancestry GWAS meta-analysis (n = 598,339).
Fig. 2: Enrichment of pain intensity in the brain.
Fig. 3: Gene prioritization for pain intensity.
Fig. 4: Genetic correlation.
Fig. 5: Drug repurposing.

Similar content being viewed by others

Data availability

The cross-ancestry and within-ancestry GWAS and meta-analysis summary-level association data will be available in the database of Genotypes and Phenotypes (dbGaP) (https://www.ncbi.nlm.nih.gov/gap/) under accession phs001672 ‘Veterans Administration (VA) MVP Summary Results from Omics Studies’. Registration and approval are needed following dbGaP’s data access process.

Code availability

Imputation was performed in the MVP using SHAPEIT4 (https://odelaneau.github.io/shapeit4/) and Minimac4 (https://genome.sph.umich.edu/wiki/Minimac4). GWAS was performed using PLINK2 (https://www.cog-genomics.org/plink2). Meta-analyses were performed using METAL (https://genome.sph.umich.edu/wiki/METAL_Documentation). GCTA-COJO (https://cnsgenomics.com/software/gcta/#Overview) was used for the identification of independent loci. FINEMAP (http://www.christianbenner.com/) was used to fine-map genomic risk loci. FUMA (https://fuma.ctglab.nl/) was used for gene association, functional enrichment and gene-set enrichment analyses. Transcriptomic and proteomic analyses were performed using FUSION (https://github.com/gusevlab/fusion_twas). Validation of transcriptomic analyses was performed using SMR (https://yanglab.westlake.edu.cn/software/smr/#Overview). Chromatin accessibility analyses were performed using H-MAGMA (https://github.com/thewonlab/H-MAGMA). LDSC (https://github.com/bulik/ldsc) was used for heritability estimation, genetic correlation analysis (also using the CTG-VL; https://genoma.io) and heritability enrichment analyses. Trans-ancestry genetic correlation was estimated using Popcorn (https://github.com/brielin/Popcorn). Genotyping and sample QC in the PMBB were performed using PLINK 1.9 (https://www.cog-genomics.org/plink/). Genotype phasing and imputation in Yale–Penn and PMBB were performed using Minimac3 (https://genome.sph.umich.edu/wiki/Minimac3). Genetic ancestry in PMBB was estimated using Eigensoft (https://github.com/DReichLab/EIG). PRS analyses were performed using PRS-CS (https://github.com/getian107/PRScs). PheWAS analyses were run using the PheWAS R package (https://github.com/PheWAS/PheWAS). The MendelianRandomization R package (https://cran.r-project.org/web/packages/MendelianRandomization/index.html) was used for MR analyses.

References

  1. Raja, S. N. et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161, 1976–1982 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Scher, C., Meador, L., Van Cleave, J. H. & Reid, M. C. Moving beyond pain as the fifth vital sign and patient satisfaction scores to improve pain care in the 21st century. Pain Manag. Nurs. 19, 125–129 (2018).

    Article  PubMed  Google Scholar 

  3. Yong, R. J., Mullins, P. M. & Bhattacharyya, N. Prevalence of chronic pain among adults in the United States. Pain 163, e328–e332 (2022).

    Article  PubMed  Google Scholar 

  4. Tompkins, D. A., Hobelmann, J. G. & Compton, P. Providing chronic pain management in the ‘fifth vital sign’ era: historical and treatment perspectives on a modern-day medical dilemma. Drug Alcohol Depend. 173, S11–S21 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Humphreys, K. et al. Responding to the opioid crisis in North America and beyond: recommendations of the Stanford–Lancet Commission. Lancet 399, 555–604 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Friedman, J. R. & Hansen, H. Evaluation of increases in drug overdose mortality rates in the US by race and ethnicity before and during the COVID-19 pandemic. JAMA Psychiatry 79, 379–381 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ballantyne, J. C. & Shin, N. S. Efficacy of opioids for chronic pain: a review of the evidence. Clin. J. Pain 24, 469–478 (2008).

    Article  PubMed  Google Scholar 

  8. Cheatle, M. D. & Savage, S. R. Informed consent in opioid therapy: a potential obligation and opportunity. J. Pain Symptom Manage. 44, 105–116 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Els, C. et al. Adverse events associated with medium- and long-term use of opioids for chronic non-cancer pain: an overview of Cochrane Reviews. Cochrane Database Syst. Rev. 10, CD012509 (2017).

    PubMed  Google Scholar 

  10. McDonagh, M. et al. Nonopioid Pharmacologic Treatments for Chronic Pain, Report No. 20-EHC010 (Agency for Healthcare Research and Quality (US), 2020).

  11. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen, C., Knudsen, G. & Steingrímsdóttir, Ó. Twin studies of pain. Clin. Genet. 82, 331–340 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Abboud, C. et al. Animal models of pain: diversity and benefits. J. Neurosci. Methods 348, 108997 (2021).

    Article  PubMed  Google Scholar 

  14. Meng, W. et al. Genome-wide association study of knee pain identifies associations with GDF5 and COL27A1 in UK Biobank. Commun. Biol. 2, 321 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meng, W. et al. A genome-wide association study finds genetic variants associated with neck or shoulder pain in UK Biobank. Hum. Mol. Genet. 29, 1396–1404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suri, P. et al. Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain. PLoS Genet. 14, e1007601 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Freidin, M. B. et al. Insight into the genetic architecture of back pain and its risk factors from a study of 509,000 individuals. Pain 160, 1361–1373 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Johnston, K. J. et al. Genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet. 15, e1008164 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnston, K. J. et al. Sex-stratified genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet. 17, e1009428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mocci, E. et al. Genome-wide association joint analysis reveals 99 risk loci for pain susceptibility and pleiotropic relationships with psychiatric, metabolic, and immunological traits. PLoS Genet. 19, e1010977 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rahman, M. S. et al. Genome-wide association study identifies RNF123 locus as associated with chronic widespread musculoskeletal pain. Ann. Rheum. Dis. 80, 1227–1235 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Meng, W. et al. A genome-wide association study finds genetic associations with broadly-defined headache in UK Biobank (N=223,773). EBioMedicine 28, 180–186 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boer, C. G. et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 184, 4784–4818 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zorina-Lichtenwalter, K., Parisien, M. & Diatchenko, L. Genetic studies of human neuropathic pain conditions: a review. Pain 159, 583–594 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Meng, W. et al. Genetic correlations between pain phenotypes and depression and neuroticism. Eur. J. Hum. Genet. 28, 358–366 (2020).

    Article  PubMed  Google Scholar 

  26. Zorina-Lichtenwalter, K. et al. Genetic risk shared across 24 chronic pain conditions: identification and characterization with genomic structural equation modeling. Pain 164, 2239–2252 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Troiani, V. et al. Genetics and prescription opioid use (GaPO): study design for consenting a cohort from an existing biobank to identify clinical and genetic factors influencing prescription opioid use and abuse. BMC Med. Genomics 14, 253 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article  PubMed  Google Scholar 

  29. Luther, S. L. et al. Measuring pain care quality in the Veterans Health Administration primary care setting. Pain 163, e715–e724 (2022).

    Article  PubMed  Google Scholar 

  30. Farrar, J. T. A consideration of differences in pain scales used in clinical trials. Pain 163, e1164–e1165 (2022).

    Article  PubMed  Google Scholar 

  31. Euasobhon, P. et al. Reliability and responsivity of pain intensity scales in individuals with chronic pain. Pain 163, e1184–e1191 (2022).

    Article  PubMed  Google Scholar 

  32. Meloto, C. B. et al. Human pain genetics database: a resource dedicated to human pain genetics research. Pain 159, 749–763 (2018).

    Article  PubMed  Google Scholar 

  33. Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, C. et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat. Neurosci. 24, 1302–1312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 59 (2021).

    Article  CAS  Google Scholar 

  36. Tsepilov, Y. A. et al. Analysis of genetically independent phenotypes identifies shared genetic factors associated with chronic musculoskeletal pain conditions. Commun. Biol. 3, 329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9, eaag1166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Valdes, A. M. et al. Association of β-blocker use with less prevalent joint pain and lower opioid requirement in people with osteoarthritis. Arthritis Care Res. (Hoboken) 69, 1076–1081 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Nakafero, G. et al. β-blocker prescription is associated with lower cumulative risk of knee osteoarthritis and knee pain consultations in primary care: a propensity score-matched cohort study. Rheumatology (Oxford) 60, 5686–5696 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Jackson, J. L. et al. A comparative effectiveness meta-analysis of drugs for the prophylaxis of migraine headache. PLoS ONE 10, e0130733 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Diatchenko, L., Parisien, M., Jahangiri Esfahani, S. & Mogil, J. S. Omics approaches to discover pathophysiological pathways contributing to human pain. Pain 163, S69–S78 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mayr, A. et al. Patients with chronic pain exhibit individually unique cortical signatures of pain encoding. Hum. Brain Mapp. 43, 1676–1693 (2022).

    Article  PubMed  Google Scholar 

  43. Lee, J. J., Lee, S., Lee, D. H. & Woo, C. W. Functional brain reconfiguration during sustained pain. eLife 11, e74463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baliki, M. N. et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J. Neurosci. 26, 12165–12173 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bortsov, A. V. et al. Brain-specific genes contribute to chronic but not to acute back pain. Pain Rep. 7, e1018 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Khoury, S. et al. Genome-wide analysis identifies impaired axonogenesis in chronic overlapping pain conditions. Brain 145, 1111–1123 (2022).

    Article  PubMed  Google Scholar 

  47. Enna, S. J. & McCarson, K. E. The role of GABA in the mediation and perception of pain. Adv. Pharmacol. 54, 1–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Goudet, C. et al. Metabotropic receptors for glutamate and GABA in pain. Brain Res. Rev. 60, 43–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Dong, W. et al. Exome sequencing implicates impaired GABA signaling and neuronal ion transport in trigeminal neuralgia. iScience 23, 101552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xie, L. et al. Divergent modulation of pain and anxiety by GABAergic neurons in the ventrolateral periaqueductal gray and dorsal raphe. Neuropsychopharmacology 48, 1509–1519 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Bridge, H. et al. Altered neurochemical coupling in the occipital cortex in migraine with visual aura. Cephalalgia 35, 1025–1030 (2015).

    Article  PubMed  Google Scholar 

  52. Foerster, B. R. et al. Reduced insular γ-aminobutyric acid in fibromyalgia. Arthritis Rheum. 64, 579–583 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, X. et al. Elevated GABA level in the precuneus and its association with pain intensity in patients with postherpetic neuralgia: an initial proton magnetic resonance spectroscopy study. Eur. J. Radiol. 157, 110568 (2022).

    Article  PubMed  Google Scholar 

  54. Kang, Y. et al. Efficacy and safety of multiple dosages of fostamatinib in adult patients with rheumatoid arthritis: a systematic review and meta-analysis. Front. Pharmacol. 10, 897 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Flodin, P. et al. Intrinsic brain connectivity in chronic pain: a resting-state fMRI study in patients with rheumatoid arthritis. Front. Hum. Neurosci. 10, 107 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yang, J., Hall, J. E., Jose, P. A., Chen, K. & Zeng, C. Comprehensive insights in GRK4 and hypertension: from mechanisms to potential therapeutics. Pharmacol. Ther. 239, 108194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Olsen, R. B. et al. Hypertension prevalence and diminished blood pressure-related hypoalgesia in individuals reporting chronic pain in a general population: the Tromsø Study. Pain 154, 257–262 (2013).

    Article  PubMed  Google Scholar 

  58. Li, C. Y., Lin, W. C., Lu, C. Y., Chung, Y. S. & Cheng, Y. C. Prevalence of pain in community-dwelling older adults with hypertension in the United States. Sci. Rep. 12, 8387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Geisheker, M. R. et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat. Neurosci. 20, 1043–1051 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ismail, V. et al. Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: an emerging neurodevelopmental syndrome. Am. J. Hum. Genet. 109, 1217–1241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aranke, M. et al. Topical sevoflurane: a novel treatment for chronic pain caused by venous stasis ulcers. Anesth. Pain Med. 11, e112832 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Finnerup, N. B. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 14, 162–173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khan, J. S., Hah, J. M. & Mackey, S. C. Effects of smoking on patients with chronic pain: a propensity-weighted analysis on the collaborative health outcomes information registry. Pain 160, 2374–2379 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nicholas, M. et al. The IASP classification of chronic pain for ICD-11: chronic primary pain. Pain 160, 28–37 (2019).

    Article  PubMed  Google Scholar 

  65. Goulet, J. L. et al. Agreement between electronic medical record-based and self-administered pain numeric rating scale: clinical and research implications. Med. Care 51, 245–250 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Agency Medical Directory Group. Pain Management. Department of Veterans Affairs Veterans Health Administration Directive 2009-053 (AMDG, 2009); https://amdg.wa.gov/Files/OpioidConference/12dHuntVAPAINCARETRANSFORMATION.pdf

  67. Hunter-Zinck, H. et al. Genotyping array design and data quality control in the Million Veteran Program. Am. J. Hum. Genet. 106, 535–548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Delaneau, O., Zagury, J. F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate, scalable and integrative haplotype estimation. Nat. Commun. 10, 5436 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  71. Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763–772 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Benner, C. et al. Prospects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studies. Am. J. Hum. Genet. 101, 539–551 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 30, 1521–1534 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

  84. Bernstein, B. E. et al. The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sey, N. Y. et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. Neurosci. 23, 583–593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rajarajan, P. et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science 362, eaat4311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Watanabe, K., Umićević Mirkov, M., de Leeuw, C. A., van den Heuvel, M. P. & Posthuma, D. Genetic mapping of cell type specificity for complex traits. Nat. Commun. 10, 3222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wingo, T. S. et al. Shared mechanisms across the major psychiatric and neurodegenerative diseases. Nat. Commun. 13, 4314 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Qi, T. et al. Genetic control of RNA splicing and its distinct role in complex trait variation. Nat. Genet. 54, 1355–1363 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ray, P. et al. Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain 159, 1325–1345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Cotto, K. C. et al. DGIdb 3.0: a redesign and expansion of the drug–gene interaction database. Nucleic Acids Res. 46, D1068–D1073 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Cuéllar-Partida, G. et al. Complex-Traits Genetics Virtual Lab: a community-driven web platform for post-GWAS analyses. Preprint at bioRxiv https://doi.org/10.1101/518027 (2019).

  100. Brown, B. C., Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kember, R. L. et al. Phenome-wide association analysis of substance use disorders in a deeply phenotyped sample. Biol. Psychiatry 93, 536–545 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Pierucci-Lagha, A. et al. Diagnostic reliability of the Semi-structured Assessment for Drug Dependence and Alcoholism (SSADDA). Drug Alcohol Depend. 80, 303–312 (2005).

    Article  PubMed  Google Scholar 

  103. Pierucci-Lagha, A. et al. Reliability of DSM-IV diagnostic criteria using the Semi-structured Assessment for Drug Dependence and Alcoholism (SSADDA). Drug Alcohol Depend. 91, 85–90 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation. Bioinformatics 31, 782–784 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Verma, A. et al. The Penn Medicine BioBank: towards a genomics-enabled learning healthcare system to accelerate precision medicine in a diverse population. J. Pers. Med. 12, 1974 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ge, T., Chen, C. Y., Ni, Y., Feng, Y. C. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations. Bioinformatics 26, 1205–1210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hemani, G. et al. The MR-base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hayes, B. L. et al. Establishing causal relationships between sleep and adiposity traits using Mendelian randomization. Obesity 31, 861–870 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Xiao, G. et al. Estimating the causal effect of frailty index on vestibular disorders: a two-sample Mendelian randomization. Front. Neurosci. 16, 990682 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Palmer, T. M. et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res. 21, 223–242 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sheehan, N. A., Didelez, V., Burton, P. R. & Tobin, M. D. Mendelian randomisation and causal inference in observational epidemiology. PLoS Med. 5, e177 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Greco, M. F., Minelli, C., Sheehan, N. A. & Thompson, J. R. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med. 34, 2926–2940 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Veterans Affairs (grants I01 BX003341 to H.R.K. and A.C.J., IK2 CX002336 to E.E.H. and the VISN 4 Mental Illness Research, Education and Clinical Center) and NIH (grants K01 AA028292 to R.L.K. and P30 DA046345 to H.R.K.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The views expressed in this article are those of the authors and do not necessarily represent the position or policy of the Department of Veterans Affairs or the US Government. We acknowledge the PMBB for providing data to generate PRSs and conduct PheWAS analyses and thank the patients of Penn Medicine who consented to participate in this research program. We thank the PMBB team and Regeneron Genetics Center for providing genetic variant data for analysis. The PMBB is approved under IRB protocol 813913 and supported by the Perelman School of Medicine at the University of Pennsylvania, a gift from the Smilow family, and the National Center for Advancing Translational Sciences of the National Institutes of Health under CTSA award UL1TR001878. This manuscript has been co-authored by UT-Battelle, LLC under contract DE-AC05-00OR22725 with the US Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allow others to do so, for US Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

S.T. conducted the main analyses and drafted the manuscript. R.V.-S. conducted phenotype-related analyses. Z.J. and H.X. conducted downstream analyses. D.S. annotated gene findings. M.P. and K.A.S. helped in conducting analyses. R.V.-S., Z.J., H.X., D.S., E.E.H., M.P., K.A.S., K.X., J.G., D.A.J., C.T.R., M.C., E.S. and S.G.W. helped in writing the manuscript. A.C.J. obtained funding to support the project and helped in writing the manuscript. R.L.K. supervised the analyses and helped in writing the manuscript. H.R.K. conceived the project, obtained funding to support it and helped in supervising the analyses and writing the manuscript. All authors reviewed and approved the final version of the manuscript

Corresponding author

Correspondence to Henry R. Kranzler.

Ethics declarations

Competing interests

H.R.K. is a member of advisory boards for Dicerna Pharmaceuticals, Sophrosyne Pharmaceuticals, Enthion Pharmaceuticals and Clearmind Medicine; a consultant to Sobrera Pharmaceuticals; the recipient of research funding and medication supplies from Alkermes for an investigator-initiated study; and a member of the American Society of Clinical Psychopharmacology’s Alcohol Clinical Trials Initiative, which was supported in the last 3 years by Alkermes, Dicerna, Ethypharm, Lundbeck, Mitsubishi and Otsuka. H.R.K. and J.G. are named as inventors on PCT patent application 15/878,640 entitled ‘genotype-guided dosing of opioid agonists’, filed on 24 January 2018. E.S. is a full-time employee of Regeneron Pharmaceuticals. The other authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Seth Ament, Weihua Meng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jerome Staal, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overview of the study.

Top left: primary GWAS analyses for pain intensity. Within ancestry, GWAS for African American (AA), European American (EA) and Hispanic American (HA) followed by cross-ancestry meta-analysis. These results were used for all downstream analyses. Top right: secondary GWAS analyses for pain intensity. Bottom: downstream analyses were conducted using the cross-ancestry, AA and EA GWAS results as indicated by color shadings: primary GWAS (green) and supplementary GWAS (brown).

Extended Data Fig. 2 Manhattan plot for the pain intensity in European American GWAS analysis.

Identified 87 independent risk loci. Novel loci (n = 52) are annotated in pink. The red line indicates GWS after correction for multiple testing (P < 5 × 10−8).

Extended Data Fig. 3 Effect-effect plot of cross-ancestry meta-analyses lead SNPs in the primary and secondary GWASs.

The magnitude and direction of the effect sizes are plotted for each GWAS. The results show significant (P < 2.2 × 10−16) high correlation (Pearson r test, two-sided) between the effect sizes (β) of pain intensity lead SNPs for primary GWAS and those for non-OUD (r = 1, a), non-zero (r = 0.97, b), males (r = 1, c) and females (r = 0.88, d).

Extended Data Fig. 4 LDSC genetic correlations for pain intensity primary and secondary GWAS.

African American: primary GWAS, n = 112,968; non-OUD GWAS, n = 104,050; non-zero GWAS, n = 61,499; male GWAS, n = 97,343; female GWAS, n = 15,625. European American: primary GWAS, n = 436,683; non-OUD GWAS, n = 416,740; non-zero GWAS, n = 202,784; male GWAS, n = 404,510; female GWAS, N = 32,173. Error bar is presented as 95% confidence interval.

Extended Data Fig. 5 MAGMA tissue enrichment for pain intensity in cross-ancestry and European American GWAS results.

Tissue enrichment analyses were conducted using FUMA. Bonferroni correction threshold (represented by the black dashed line) = 9.25 × 10−4 (0.05/54).

Extended Data Fig. 6 Gene-based Manhattan plots for cross-ancestry, European American and African American GWAS.

Gene-based association analyses were conducted using FUMA and genes that survive multiple correction are annotated (Bonferroni p = 2.67 × 10−6 [0.05/18,702]).

Extended Data Fig. 7 Regional plot for TRAIP*rs2247036 and MST1R*rs9815930 on chromosome 3.

Credible locus prioritized by FINEMAP (PP > 0.5) is annotated with red rings. The MST1R*rs9815930 locus is in high LD (r2 > 0.8) with the lead variant TRAIP*rs2247036.

Extended Data Fig. 8 Regional plot for NOP14*rs71597204 and GRK4*rs2798303 on chromosome 4.

Credible locus prioritized by FINEMAP (PP > 0.5) is annotated with red rings. The GRK4*rs2798303 locus is in moderate LD (r2 > 0.4) with the lead variant NOP14*rs71597204.

Supplementary information

Supplementary Information

List of consortium members and Supplementary Figs. 1–9.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–37.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toikumo, S., Vickers-Smith, R., Jinwala, Z. et al. A multi-ancestry genetic study of pain intensity in 598,339 veterans. Nat Med 30, 1075–1084 (2024). https://doi.org/10.1038/s41591-024-02839-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-024-02839-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing