nature medicine **Article** https://doi.org/10.1038/s41591-023-02774-x # Prospective prenatal cell-free DNA screening for genetic conditions of heterogenous etiologies Received: 14 February 2023 Accepted: 18 December 2023 Published online: 22 January 2024 Check for updates A list of authors and their affiliations appears at the end of the paper Prenatal cell-free DNA (cfDNA) screening uses extracellular fetal DNA circulating in the peripheral blood of pregnant women to detect prevalent fetal chromosomal anomalies. However, numerous severe conditions with underlying single-gene defects are not included in current prenatal cfDNA screening. In this prospective, multicenter and observational study, pregnant women at elevated risk for fetal genetic conditions were enrolled for a cfDNA screening test based on coordinative allele-aware target enrichment sequencing. This test encompasses the following three of the most frequent pathogenic genetic variations: aneuploidies, microdeletions and monogenic variants. The cfDNA screening results were compared to invasive prenatal or postnatal diagnostic test results for 1,090 qualified participants. The comprehensive cfDNA screening detected a genetic alteration in 135 pregnancies with 98.5% sensitivity and 99.3% specificity relative to standard diagnostics. Of 876 fetuses with suspected structural anomalies on ultrasound examination, comprehensive cfDNA screening identified 55 (56.1%) aneuploidies, 6 (6.1%) microdeletions and 37 (37.8%) single-gene pathogenic variants. The inclusion of targeted monogenic conditions alongside chromosomal aberrations led to a 60.7% increase (from 61 to 98) in the detection rate. Overall, these data provide preliminary evidence that a comprehensive cfDNA screening test can accurately identify fetal pathogenic variants at both the chromosome and single-gene levels in high-risk pregnancies through a noninvasive approach, which has the potential to improve prenatal evaluation of fetal risks for severe genetic conditions arising from heterogenous molecular etiologies. Clinical Trials. gov registration: ChiCTR2100045739. Birth defects are structural or functional abnormalities that can occur during intrauterine life, at birth or later in infancy¹. In live newborns, the prevalence of birth defects is approximately 2-4%, while it is increased in spontaneous miscarriages and stillbirths^{2,3}. Genetic variations derived from chromosome aberrations and single-gene variants are among the leading factors causing birth defects which account for 13-15% of their underlying etiology⁴. To ameliorate the impacts of genetic conditions on affected patients and their families, most of which have no effective treatments, carrier and newborn screening for conditions such as Tay-Sachs disease, cystic fibrosis and phenylketonuria have been implemented before or after birth⁵. These population-based screening tests have resulted in timely diagnosis, optimized treatment and overall reduced birth defect incidence^{4,6-8}. Importantly, the discovery of fetal cell-free DNA (cfDNA) in pregnant women's peripheral blood elicited the development of noninvasive screening for Down syndrome (trisomy 21 or T21) and other frequent chromosomal abnormalities^{9,10}. 🖂 e-mail: jinglanzhang@foxmail.com; wanghua213@aliyun.com; zhangdan@zju.edu.cn; chenming_xu2006@163.com; huanghefg@hotmail.com After clinical studies demonstrated its significantly improved accuracy over conventional maternal serum and/or image-based prenatal screening for the detection of an euploidies, prenatal cfDNA screening has been widely adopted around the world¹¹⁻¹⁵. With highly efficient DNA sequencing technologies and bioinformatic tools, cfDNA screening has been expanded to include microdeletion syndromes caused by chromosome segmental copy number losses such as 22g11.2 deletion syndrome¹⁶⁻¹⁸. Importantly, the fetal cfDNA analysis has enabled the clinical application of noninvasive prenatal diagnosis for single-gene conditions in high-risk pregnancies, including those with abnormal fetal ultrasound findings¹⁹⁻²¹. This approach has demonstrated its high degree of accuracy, thereby reducing unnecessary invasive diagnostic procedures²²⁻²⁴. Initial investigations of prenatal cfDNA screening for multiple monogenic conditions within a diverse population have indicated promising results, but meticulous follow-up studies centered on individual patient diagnostic outcomes are required to substantiate its validity in a clinical context²⁵⁻²⁷. In more than half of pediatric patients and fetuses with single-gene defects, these conditions are attributed to de novo monogenic variants^{28–31}. However, the detection of such variants falls outside the purview of conventional prenatal cfDNA screening or parental carrier screening. As a result, with the existing standard of prenatal care, severe, monogenic conditions like FGFR3-related skeletal dysplasia are typically detected first through fetal ultrasound screening³². By this stage, the available options for managing the pregnancy may be substantially constrained. To counter these limitations, we have recently developed a new prenatal cfDNA screening technique, known as coordinative allele-aware target enrichment sequencing (COATE-seq) for the concurrent screening of monogenic and chromosomal conditions³³. COATE-seg attenuates both intra-allelic and interallelic hybridization bias, thereby enhancing the detection of low-level fetal variants associated with common aneuploidies or copy number variations (CNVs; Extended Data Fig. 1)33. Furthermore, by leveraging the advantages of pair-end and high-coverage sequencing, this assay simultaneously analyzes both the cfDNA fragment length and allelic fraction associated with fetal monogenic variants. Such a dual strategy, used within a single test, results in simultaneous and enhanced detection of both chromosomal and monogenic variants³³. Although cfDNA screening cannot replace phenotype-driven screening or diagnostic procedures executed via fetal imaging, it is complementary to existing strategies, thereby enhancing the detection rate of fetuses with genetic conditions of various molecular origins³⁴⁻⁴¹. However, the accuracy of such a comprehensive screening approach has not yet been explored in routine clinical settings through prospective cohort studies. Additionally, it remains uncertain to what extent there is an additional detection yield when incorporating monogenic conditions beyond those chromosomal abnormalities in current methods. Given the substantial impact of cfDNA screening in prenatal care, this prospective observational study aims to evaluate the clinical validity and detection capabilities of a new prenatal screening methodology using COATE-seq, which targets three of the most prevalent types of pathogenic genetic variants: aneuploidies, microdeletions and monogenic variants. ## **Results** #### Patients and data collection Between 24 April 2021 and 10 September 2022, 1,191 sequentially identified pregnant women at elevated risk for fetal genetic conditions were enrolled and followed up in a prospective and observational clinical study from three maternity hospitals in different provinces of China. All participants underwent a comprehensive prenatal cfDNA screening test, which included the analysis of seven common aneuploidies, nine microdeletions and monogenic conditions associated with 75 genes (Extended Data Tables 1 and 2). A total of 101 participants were excluded from further analyses. Of these, 71 had no diagnostic test results available for fetal germline variants, 15 had maternal variants in targeted genomic regions interfering with fetal assessment, 8 did not meet the sequencing depth requirements for the screening test and in 7 cases, the sequencing data failed quality control for singleton pregnancy due to multiple gestation or sample contamination (Fig. 1). The mean maternal age of all qualified participants in the final cohort (n = 1,090) was 30.8 years (Table 1). The proportion of women carrying pregnancies at the gestational ages of 12-18 weeks, 19-24 weeks and ≥25 weeks was 28.9%, 39.8% and 31.3%, whereas the average fetal fraction for each group was 10.6%, 11.7% and 17.2%, respectively (Table 1). All pregnancies were at high risk of fetal genetic disease – 876 (80.4%) had fetal ultrasound anomalies, 116 (10.6%) had abnormal maternal serum screening results, 86 (7.9%) had high-risk results in standard cfDNA screening for chromosomal conditions and 12 (1.1%) had a previous pregnancy history suggesting an increased risk for fetal genetic conditions (Table 1 and Extended Data Table 3). Diagnostic testing outcomes, derived from invasive prenatal or postnatal procedures that are part of the standard of care, were gathered following the cfDNA screening test from a total of 1,090 participants. A total of 978 pregnant women underwent invasive prenatal procedures such as amniocentesis or chorionic villus sampling, and an additional 112 participants were tested on the products of conception or fetal cord blood (Table 1). This allowed for a comparative analysis between the results derived from the cfDNA screening and diagnostic testing (Table 2). The diagnostic tests included next-generation sequencing (NGS) single-gene panels for targeted monogenic conditions, whole-exome sequencing (WES), Sanger sequencing, chromosome microarray analysis, CNV sequencing (CNV-seq) and karyotyping (Table 3 and Extended Data Tables 4-6). All clinical pregnancy management decisions were based on the results of diagnostic testing, rather than the comprehensive cfDNA screening results, in accordance with current standard practice guidelines. Pregnancy outcomes by postnatal follow-up were pursued after which all the clinical examination results were evaluated to examine if they were consistent with the genetic diagnosis (Table 3 and Extended Data Tables 4 and 5). # The clinical validity of the comprehensive prenatal cfDNA
screening In all participants in the final cohort (n = 1,090), pathogenic genetic variants were detected in 135 (12.4%) pregnancies by the comprehensive cfDNA screening and confirmed by diagnostic testing, which included 89 aneuploidies, 9 microdeletions and 37 monogenic variants (Table 2). There were 44 trisomy 21 (T21), 12 trisomy 18 (T18), 5 trisomy 13 (T13), 15 45X, 5 47XYY, 6 47XXX and 2 47XXY fetuses with an euploidies. The microdeletions detected included six 22q11.2del and three 4p16del cases (Fig. 1). In fetuses affected by monogenic conditions, diagnostic variants were found in the following genes (the number of affected fetuses is indicated): FGFR3 (13), COL2A1 (4), PTPN11 (3), HRAS (2), FGFR2 (2), KMT2D (2), COL1A2 (2), SOS1 (1), EBP (1), EPHB4 (1), SMAD4 (1), TSC2 (1), KRAS (1), COL1A1 (1), NSD1 (1) and NRAS (1; Fig. 1 and Table 3). With respect to testing indication, the abovementioned diagnostic genetic variants were identified in 98 (11.2%) of 876 pregnancies with fetal structural abnormalities, 35 (40.7%) of 86 pregnancies with high-risk results on standard cfDNA screening for chromosomal conditions, 2 (1.7%) of 116 pregnancies with high-risk results on maternal serum screening and none were identified in the remaining 12 cases with previous pregnancy history suggestive of an increased risk for genetic conditions (Extended Data Table 3). Overall, the comprehensive cfDNA screening demonstrated a clinical sensitivity of 98.5% (95% confidence interval (CI), 94.3-99.7%) and specificity of 99.3% (95% CI, 98.4-99.7%) for all conditions screened (Table 2). These values were determined by comparing the screening with gold-standard diagnostic tests for all the conditions screened (Table 3 and Extended Data Tables 4, 5 and 6). The positive predictive value (PPV) and negative predictive value (NPV) were 95.7% (95% CI, 90.6-98.3%) and 99.8% **Fig. 1**| **Clinical study of comprehensive prenatal cfDNA screening targeting multiple types of genetic conditions.** A total of 1,191 pregnant women were enrolled. Among them, 101 were excluded including 71 without diagnostic testing results, 15 maternal carriers with variants in target regions, 8 failing sequencing depth quality control requirements and 7 failing singleton quality control requirements due to multiple pregnancies or sample contamination. A final cohort of 1,090 cases was subjected to further analysis, and 135 pregnancies were identified through the new screening method, including 89 aneuploidies, 9 microdeletions and 37 cases with monogenic conditions. $(95\%\ CI, 99.1–100\%)$ respectively. For an euploidies, microdeletions, and monogenic conditions, the test sensitivity was $97.8\%\ (95\%\ CI, 91.5–99.6\%), 100\%\ (95\%\ CI, 62.9–100\%), and 100\%\ (95\%\ CI, 88.3–100\%), while the test specificity was <math display="inline">99.4\%\ (95\%\ CI, 98.6–99.8\%), 100\%\ (95\%\ CI, 99.6–100\%), and <math display="inline">100\%\ (95\%\ CI, 99.5–100\%),$ respectively (Table 2). The area under the receiver operating-characteristic (ROC) curve (AUC) for an euploidies, microdeletions and monogenic conditions were $0.996, 1.000\ and\ 1.000$, respectively (Table 2). There were six false-positive cases on the comprehensive cfDNA screening that yielded negative results on diagnostic tests (Extended Data Table 5). All of these pregnancies also tested positive on standard cfDNA screening using a different analytical methodology involving low-depth whole-genome sequencing (Extended Data Table 5). In addition, there were two false-negative T21 cases (with positive results on diagnostic tests) that also tested negative on standard cfDNA screening (Extended Data Table 5). Given that two different methods both yielded false screening results for the abovementioned eight cases, it was unlikely that they were caused by analytical pitfalls in the cfDNA screening but may rather be the results of the genetic differences between the fetus and placenta. Confined placenta mosaicism and restricted variants in fetuses that are absent in the placenta are known factors to cause discrepant results in prenatal cfDNA screening and diagnostic testing^{42,43}. Notably, although the comprehensive cfDNA screening test produced incorrect chromosomal results for eight pregnancies, there were not any false results in all 37 positive and 966 negative cases for the monogenic conditions screened in this study (Table 2 and Fig. 1). # The detection yield of the comprehensive prenatal cfDNA screening in fetal structural anomalies A diagnostic genetic variant was detected in 98 of 876 (11.2%) fetuses (P1–P98) with structural anomalies detected by ultrasound screening (Table 3 and Extended Data Table 4). Among them, 42 (42.9%) had common autosome aneuploidies (T21, T18 and T13), 13 (13.3%) had sex chromosome aneuploidies, 6 had microdeletions (6.1%) and 37 (37.8%) had monogenic conditions (Fig. 2a, Table 3 and Extended Data Table 4). The overall detection rate for a diagnostic genetic variant was highest in lymphatic or effusion anomalies (36.9%), followed by skeletal (24.7%) and multisystem anomalies (23.3%; Fig. 2b). The detection rate for chromosomal aberrations, including both aneuploidies and microdeletions, was highest in lymphatic or effusion abnormalities (32.6%), followed by multisystem anomalies (19.2%), increased nuchal translucency (8.8%), cardiac defects (5.7%) and craniofacial abnormalities (5.7%; Fig. 2b and Extended Data Table 3). The diagnostic yield for monogenic conditions was highest in skeletal abnormalities (23.5%), followed by lymphatic or effusion abnormalities (4.3%), multisystem anomalies (4.1%), fetal growth restriction (2.9%) and brain abnormalities (2.2%; Fig. 2b and Extended Data Table 3). The detection rate of a diagnostic genetic variant differed considerably with respect to fetal phenotypes and the underlying genetic etiologies. For instance, 32.6% of fetuses with lymphatic or effusion abnormalities had chromosomal conditions, while only 4.3% of such cases were caused by single-gene conditions (Fig. 2b and Extended Data Table 3). On the other hand, 23.5% of fetuses with skeletal anomalies were found to have monogenic conditions, while only 1.2% of such cases were attributed to chromosomal abnormalities (Fig. 2b and Extended Data Table 3). In 13 (35.1%) of the 37 fetuses with structural anomalies caused by monogenic conditions (P18, P19, P20, P21, P22, P25, P26, P29, P32, P33, P34, P36 and P37), pathogenic variants were found in *PTPN11*, *HRAS*, *KMT2D*, *SOS1*, *SMAD4*, *TSC2*, *KRAS*, *NSD1* and *NRAS* (Table 3). Defects in these genes are known to cause postnatal neurological deficits such as learning disabilities, development delay Table 1 | Demographic and clinical characteristics | Characteristics | Values | |---|------------------| | Number of patients analyzed | 1,090 | | Mean maternal age—year (range) | 30.8 (20-46) | | Median maternal age—year (range) | 31.0 (20-46) | | Mothers ≥35 years old—no. (%) | 225 (20.6) | | Mean maternal weight—kg (range) | 60.7 (39–148) | | Median maternal weight—kg (range) | 59.7 (39–148) | | Mean body mass index (range) | 23.6 (15.4–61.4) | | Mean gestational age at sample collection—week (range) | 22.5 (12–37.1) | | Number of pregnancies 12–18 weeks (%); mean fetal fraction (%) | 315 (28.9); 10.6 | | Number of pregnancies 19–24 weeks (%); mean fetal fraction (%) | 434 (39.8); 11.7 | | Number of pregnancies ≥25 weeks (%); mean fetal fraction (%) | 341 (31.3); 17.2 | | Pregnancies with fetal structural anomalies | 876 (80.4) | | Cardiac—no. (%) | 174 (19.9) | | Increased nuchal translucency—no. (%) | 159 (18.2) | | Renal—no. (%) | 108 (12.3) | | Brain—no. (%) | 91 (10.4) | | Skeletal—no. (%) | 85 (9.7) | | Multisystem anomalies—no. (%) | 73 (8.3) | | Lymphatic or effusion—no. (%) | 46 (5.3) | | Abdominal—no. (%) | 41 (4.7) | | Craniofacial—no. (%) | 35 (4.0) | | Fetal growth restriction—no. (%) | 35 (4.0) | | Chest—no. (%) | 17 (1.9) | | Spinal—no. (%) | 12 (1.4) | | Pregnancies with high-risk results on standard prenatal cfDNA screening—no. (%) | 86 (7.9) | | Pregnancies with high-risk results on maternal serum screening—no. (%) | 116 (10.6) | | Pregnancies with positive clinical history (for example, recurrent miscarriage)—no. (%) | 12 (1.1) | | Diagnostic testing on amniocytes—no. (%) | 977 (89.6) | | Diagnostic testing on chorionic villus—no. (%) | 1 (0.1) | | Diagnostic testing on product of conception—no. (%) | 111 (10.2) | | Diagnostic testing on umbilical cord blood—no. (%) | 1 (0.1) | | Pregnancy outcome live birth—no. (%) | 623 (57.2) | | Pregnancy outcome elective abortion—no. (%) | 268 (24.6) | | Pregnancy outcome spontaneous abortion (%) | 2 (0.2) | | • , , , , , , , , , , , , , , , , , , , | | and intellectual impairment, even though the affected fetuses did not show substantial central nervous system anomalies on routine prenatal ultrasound screening (Table 3). Overall, the detection for a diagnostic genetic variant was increased by 60.7% (from 61 to 98) for pregnancies with fetal structural anomalies when those targeted monogenic conditions were analyzed in conjunction with chromosomal conditions (Fig. 2a and Extended Data Table 3). Note that the monogenic conditions associated with the 75 genes were selected specifically for this high-risk cohort. For an extended population, more stringent criteria should be applied, focusing Table 2 | Clinical performance of the comprehensive prenatal cfDNA screening | Parameters | Results | |----------------------|--------------------| | Overall | | | True positive | 135 | | True negative | 865 | | False positive | 6 | | False negative | 2 | | Sensitivity (95% CI) | 98.5% (94.3–99.7%) | | Specificity (95% CI) | 99.3% (98.4-99.7%) | | Accuracy (95% CI) | 99.2% (98.4–99.6%) | | PPV (95% CI) | 95.7% (90.6–98.3%) | | NPV (95% CI) | 99.8% (99.1–100%) | | Aneuploidies | | | True positive | 89 | |
True negative | 985 | | False positive | 6 | | False negative | 2 | | Sensitivity (95% CI) | 97.8% (91.5–99.6%) | | Specificity (95% CI) | 99.4% (98.6–99.8%) | | Accuracy (95% CI) | 99.3% (98.5-99.7%) | | PPV (95% CI) | 93.7% (86.2–97.4%) | | NPV (95% CI) | 99.8% (99.2–100%) | | AUC | 0.996 | | Microdeletions | | | True positive | 9 | | True negative | 1,062 | | False positive | 0 | | False negative | 0 | | Sensitivity (95% CI) | 100% (62.9–100%) | | Specificity (95% CI) | 100% (99.6–100%) | | Accuracy (95% CI) | 100% (99.6–100%) | | PPV (95% CI) | 100% (62.9–100%) | | NPV (95% CI) | 100% (99.6–100%) | | AUC | 1.000 | | Monogenic conditions | | | True positive | 37 | | True negative | 966 | | False positive | 0 | | False negative | 0 | | Sensitivity (95% CI) | 100% (88.3–100%) | | Specificity (95% CI) | 100% (99.5–100%) | | Accuracy (95% CI) | 100% (99.5–100%) | | PPV (95% CI) | 100% (88.3–100%) | | NPV (95% CI) | 100% (99.5–100%) | | AUC | 1.000 | The overall test sensitivity and specificity were calculated based on all confirmed positive cases through diagnostic testing on the variant detected by cfDNA screening and all negative cases confirmed by diagnostic tests covering all three types of variants on genes related to conditions characterized by severe outcomes, early onset, prevalent incidence and high analytical performance (Extended Data Table 2). Table 3 | Summary of fetuses affected by monogenic conditions identified by comprehensive prenatal cfDNA screening and confirmed by diagnostic testing | Participants | GA
(weeks) | MA
(years) | Indications | FF (%) | Comprehensive prenatal cfDNA screening results | Diagnostic testing and pregnancy outcomes | |--------------|---------------|---------------|--|--------|---|---| | P1 | 18.7 | 27 | Systemic skeletal malformations | 7.1 | FGFR3 (NM_000142.4): c.742C>T, p.Arg248Cys, thanatophoric dysplasia | Amniocentesis; WES; elective abortion | | P2 | 22.0 | 27 | Generalized skeletal dysplasia,
narrow aortic diameter, small
cerebellum | 12.9 | FGFR3 (NM_000142.4): c.746C>G,
p.Ser249Cys, thanatophoric dysplasia | Product of conception;
NGS-SGD and CNV-seq; elective
abortion | | P3 | 23.0 | 29 | Systemic skeletal malformations | 7.6 | FGFR3 (NM_000142.4): c.1118A>G, p.Tyr373Cys, thanatophoric dysplasia | Product of conception; Sanger and CNV-seq; elective abortion | | P4 | 27.9 | 31 | Short long bones | 16.9 | FGFR3 (NM_000142.4): c.1138G>A,
p.Gly380Arg, achondroplasia | Product of conception;
NGS-SGD and CNV-seq; elective
abortion | | P5 | 21.7 | 32 | NF 6.2 mm, enlarged head,
shortened femur, humerus, and
fibula | 14.0 | FGFR3 (NM_000142.4): c.1138G>A,
p.Gly380Arg, achondroplasia | Amniocentesis; NGS-SGD; elective abortion | | P6 | 30.9 | 34 | Shortened femur and humerus | 22.5 | FGFR3 (NM_000142.4): c.1138G>A, p.Gly380Arg, achondroplasia | Product of conception; Sanger and NGS-SGD; elective abortion | | P7 | 28.0 | 29 | Shortened femur and humerus | 17.4 | FGFR3 (NM_000142.4): c.1138G>A, p.Gly380Arg, achondroplasia | Product of conception; Sanger and NGS-SGD; elective abortion | | P8 | 31.9 | 29 | Shortened femur and humerus | 30.2 | FGFR3 (NM_000142.4): c.1138G>A, p.Gly380Arg, achondroplasia | Amniocentesis; WES | | P9 | 30.9 | 29 | Growth restriction | 19.5 | FGFR3 (NM_000142.4): c.1138G>A, p.Gly380Arg, achondroplasia | Cord blood; WES; elective abortion | | P10 | 20.6 | 30 | Skeletal dysplasia, hydrocephalus | 18.1 | FGFR3 (NM_000142.4): c.1948A>G,
p.Lys650Glu, Thanatophoric dysplasia | Product of conception;
NGS-SGD; elective abortion | | P11 | 16.0 | 37 | Skeletal dysplasia | 11.5 | FGFR3 (NM_000142.4): c.1948A>G, p.Lys650Glu, thanatophoric dysplasia | Product of conception;
NGS-SGD; elective abortion | | P12 | 16.4 | 30 | Short limbs and narrow thorax | 8.2 | FGFR3 (NM_000142.4): c.2421A>T,
p.*807Cysext*101, thanatophoric
dysplasia | Amniocentesis; WES and
NGS-SGD; elective abortion | | P13 | 18.0 | 36 | Short limbs | 9.3 | FGFR3 (NM_000142.4): c.2419T>G,
p.(*807Glyext*101), thanatophoric
dysplasia | Amniocentesis; NGS-SGD; elective abortion | | P14 | 24.3 | 26 | Skeletal dysplasia, micrognathia, short long bones | 19.3 | COL2A1 (NM_001844.5): c.1546G>A, p.Gly516Ser, achondrogenesis | Amniocentesis; WES and NGS-SGD; elective abortion | | P15 | 13.0 | 32 | Nuchal translucency 7.4mm,
micrognathia, abnormal heart
structures | 15.1 | COL2A1 (NM_001844.5): c.1597C>T, p.
Arg533*, hypochondrogenesis | Amniocentesis; NGS-SGD; elective abortion | | P16 | 15.0 | 26 | Skeletal dysplasia, NF thickening | 5.4 | COL2A1 (NM_001844.5): c.2887G>A, p.Gly963Ser, achondrogenesis | Product of conception; WES and NGS-SGD; elective abortion | | P17 | 13.1 | 34 | Encephalocele, extremely short limbs, single umbilical artery | 9.3 | COL2A1 (NM_001844.5):c.2951G>A, p.Gly984Asp, achondrogenesis | Amniocentesis; Sanger and NGS-SGD; elective abortion | | P18 | 18.6 | 32 | Venous catheter absent | 6.8 | PTPN11 (NM_002834.4): c.844A>G,
p.Ile282Val, Noonan spectrum disorder | Amniocentesis; NGS-SGD; elective abortion | | P19 | 18.1 | 35 | Nuchal translucency 4.5 mm | 6.8 | PTPN11 (NM_002834.4): c.1510A>G,
p.Met504Val, Noonan spectrum
disorder | Amniocentesis; NGS-SGD;
liveborn | | P20 | 23.3 | 27 | NF 8.1mm | 7.9 | PTPN11 (NM_002834.4): c.1510A>G,
p.Met504Val, Noonan spectrum
disorder | Amniocentesis; NGS-SGD | | P21 | 18.1 | 28 | NF 6.0 mm, cystic hygroma | 10.9 | HRAS (NM_005343.4): c.34G>A,
p.Gly12Ser, Costello syndrome | Amniocentesis; NGS-SGD | | P22 | 18.1 | 34 | Single umbilical artery, cystic hygroma | 17.1 | HRAS (NM_005343.4): c.38G>A,
p.Gly13Asp, Costello syndrome | Product of conception;
NGS-SGD; elective abortion | | P23 | 24.1 | 31 | Syndactyly | 17.3 | FGFR2 (NM_000141.4): c.755C>G,
p.Ser252Trp, Apert syndrome | Product of conception; WES; elective abortion | | P24 | 23.4 | 34 | Lateral ventriculomegaly | 12.0 | FGFR2 (NM_000141.4): c.1025G>C,
p.Cys342Ser, Pfeiffer syndrome | Amniocentesis; NGS-SGD;
liveborn | | P25 | 17.0 | 32 | Left ventricular hypoplasia, right ventricle double outlet | 8.9 | KMT2D (NM_003482.3): c.2263dup,
p.R755Pfs*3, Kabuki syndrome | Amniocentesis; Sanger and NGS-SGD; elective abortion | | P26 | 23.6 | 34 | Small fetus, multiple abnormalities | 3.1 | KMT2D (NM_003482.3): c.8453G>A,
p.Trp2818Ter, Kabuki syndrome | Amniocentesis, NGS-SGD; elective abortion | Table 3 (continued) | Summary of fetuses affected by monogenic conditions identified by comprehensive prenatal cfDNA screening and confirmed by diagnostic testing | Participants | GA
(weeks) | MA
(years) | Indications | FF (%) | Comprehensive prenatal cfDNA screening results | Diagnostic testing and pregnancy outcomes | |--------------|---------------|---------------|--|--------|--|--| | P27 | 24.3 | 31 | Shortened femur, fibula, tibia, and humerus | 9.0 | COL1A2 (NM_000089.3): c.2835+1G>A, osteogenesis imperfecta | Amniocentesis; Sanger and WES; elective abortion | | P28 | 28.6 | 27 | Curved and short femur | 13.1 | COL1A2 (NM_000089.3): c.3106G>C, p.Gly1036Arg, osteogenesis imperfecta | Amniocentesis; NGS-SGD; liveborn | | P29 | 31.0 | 31 | Enlarged head circumference,
short long bones, dilated left renal
pelvis, polyhydramnios | 31.0 | SOS1 (NM_005633.3): c.1294T>C,
p.Trp432Arg, Noonan spectrum
disorder | Amniocentesis; WES, and NGS-SGD; elective abortion | | P30 | 29.0 | 31 | Spinal abnormalities, skeletal
dysplasia | 17.5 | EBP (NM_006579.3): c.187C>T,
p.Arg63Ter, chondrodysplasia
punctata | Product of conception;
NGS-SGD; elective abortion | | P31 | 25.0 | 34 | Single umbilical artery, pelvic ectopic kidney | 14.6 | EPHB4 (NM_004444.5):
c.1124dupG, p.D376Rfs*, capillary
malformation-arteriovenous
malformation syndrome | Amniocentesis; Sanger; elective abortion | | P32 | 21.0 | 32 | Lateral ventriculomegaly | 4.6 | SMAD4 (NM_005359.5): c.1486C>T, p.Arg496Cys, Myhre syndrome | Amniocentesis; Sanger and NGS-SGD; elective abortion | | P33 | 26.1 | 33 | Cardiac rhabdomyoma | 19.4 | TSC2 (NM_000548.5): c.2098-2A>G, tuberous sclerosis | Product of conception; WES; elective abortion | | P34 | 19.6 | 32 | Nuchal translucency 4.3 mm | 8.9 | KRAS (NM_004985.5): c.458A>T,
p.Asp153Val, Noonan spectrum
disorder | Amniocentesis; NGS-SGD;
liveborn | | P35 | 24.6 | 29 | Skeletal dysplasia | 10.9 | COL1A1 (NM_000088.3): c.1571G>C,
p.Gly524Ala, osteogenesis imperfecta | Product of conception; WES; elective abortion | | P36 | 26.1 | 33 | Bilateral hydronephrosis | 10.4 | NSD1 (NM_022455.4): c.7239dupT, p.
Leu2414Ffs*, Sotos syndrome | Amniocentesis; NGS-SGD | | P37 | 23.7 | 29 | NF 19 mm, peritoneal effusion | 14.9 | NRAS (NM_002524.5): c.182A>C,
p.Gln61Pro, Noonan spectrum disorder | Amniocentesis; WES, NGS-SGD; elective abortion | FF, fetal fraction; GA, gestational age (weeks); MA, maternal age (years); NF, nuchal fold; NGS-SGD, a next-generation sequencing panel test for the targeted 75 genes included in the cfDNA screening. # Pregnancy outcome for the participants undergoing the comprehensive prenatal cfDNA screening The pregnancy outcome data were pursued up to 6 weeks after the expected delivery date. In all 1,090 qualified participants who underwent both comprehensive cfDNA screening and diagnostic test procedures, there were 623 (57.2%) live births, 268 (24.6%) elective abortions and 2 (0.2%) spontaneous abortions (Table 1). Of the total participants, 197
(18.1%) had no available pregnancy outcome data. They were enrolled and had prenatal diagnoses at one of the participating hospitals, but they sought postdiagnosis management and/or delivery at other clinical care centers (Table 1). In those 137 cases with positive results on diagnostic testing, 11 (8.0%) had live births, 106 (77.4%) had elective abortions, 1 (0.7%) had spontaneous abortion and 19 (13.9%) had unknown pregnancy outcomes (Extended Data Table 7). Among them, 100 had fetal anomalies on ultrasound screening, of which 4 (4.0%) had live births, 82 (82.0%) had elective abortions and 13 (13.0%) had unknown pregnancy outcomes (Extended Data Table 7). Pregnancy outcomes together with all postnatal and/or prenatal clinical examinations were evaluated, and no discrepancies were found between the genetic diagnosis and clinical examination (Table 3 and Extended Data Table 4). All clinical pregnancy management decisions were based on the results of diagnostic testing. In all cases with pregnancy outcome data, no adverse events were reported associated with the performing of the cfDNA screening or diagnostic tests. # The parental age effects on different types of genetic conditions It is known that increased maternal age is one of the most substantial risk factors for fetal aneuploidies such as T21 and T18 (refs. 44,45). Advanced paternal age is associated with an increased risk for dominant conditions caused by de novo variants in single genes, such as FGFR2, FGFR3 and PTPN11 (refs. 46,47). No significant association of increased maternal or paternal age with the incidence of chromosome segmental CNV was observed ⁴⁸. In this cohort, we investigated whether parental ages were associated with the occurrence of different types of genetic conditions. In 61 pregnancies affected by autosome aneuploidies, the mean maternal age was 32.8 years, which was significantly elevated from that of 1,015 participants (30.7 years, P = 0.005) with no fetal autosome aneuploidy detected. The parental ages were not significantly different between the positive and negative cases for sex chromosome aneuploidies, microdeletions and monogenic conditions (Extended Data Table 8). ### **Discussion** In this cohort of pregnancies with elevated risks for fetal genetic conditions, we show that a comprehensive fetal cfDNA analysis can reliably identify fetuses at risks of different genetic etiologies including ane-uploidies, microdeletions and monogenic conditions. The strength of this study was the use of a state-of-the-art prenatal cfDNA screening method, which concurrently detected genetic aberrations ranging from a single-nucleotide variant to whole chromosome copy number change. This method has the benefit to circumvent the typical stratification of the referral prenatal population caused by sequential testing of chromosomal and monogenic conditions, thus allowing an unbiased assessment for the detection yield of different genetic etiologies in an at-risk population. Compared to current standard screening only targeting chromosomal abnormalities, the detection rate for a diagnostic genetic variant was increased by 60.7% in the comprehensive cfDNA **Fig. 2** | The detection rate of diagnostic genetic variants in pregnancies with fetal structural anomalies. **a**, A diagnostic genetic variant was detected in 98 of 876 (11.2%) pregnancies with fetal structural anomalies. Among them, 42 (42.9%) had common autosome aneuploidies, 13 (13.3%) had sex chromosome aneuploidies, 6 had microdeletions (6.1%) and 37 (37.8%) had monogenic conditions. **b**, In all 876 pregnancies with fetal structural anomalies, the detection rate for a diagnostic genetic variant was highest in lymphatic or effusion anomalies (36.9%), followed by skeletal anomalies (24.7%) and multisystem anomalies (23.3%). The detection rate for chromosomal conditions was highest in lymphatic or effusion anomalies (32.6%), followed by multisystem anomalies (19.2%), increased NT (8.8%), cardiac defects (5.7%) and craniofacial anomalies (5.7%). The detection rate for monogenic conditions was highest in skeletal anomalies (23.5%), followed by lymphatic or effusion anomalies (4.3%), multisystem anomalies (4.1%), FGR (2.9%) and brain anomalies (2.2%). NT, nuchal translucency; FGR, fetal growth restriction. screening. Because the patient cohort included a large variety of fetal anomalies instead of targeted conditions, this study was made more generalizable to uncover the detectability of cfDNA screening for both chromosomal and monogenic variants. The inclusion of single-gene conditions in fetal cfDNA screening has benefits for prenatal diagnosis. While such screening can never replace image-based screening procedures, it may function as an adjunctive instrument for early identification of presymptomatic fetuses during the first trimester, such as those affected by achondroplasia. In addition, some monogenic conditions are characterized by neurological defects that may not be evident on routine prenatal ultrasound screening. In the study, pathogenic variants (scored according to the American College of Medical Genetics and Genomics sequence variant interpretation guidelines) associated with postnatal neurological impairments such as learning disabilities, developmental delay and intellectual disability were identified in 13 of 37 fetuses (35.1%) with monogenic conditions who displayed no prenatal abnormalities in the brain or central nervous system. Prenatal and perinatal management can also substantially benefit from prenatal cfDNA screening, as demonstrated by a previous report on a fetus affected by Costello syndrome⁴⁹. This becomes particularly relevant when pregnant women, aware of fetal anomalies, opt to continue their pregnancies and decline invasive procedures. In these situations, prenatal cfDNA analysis serves as an invaluable tool to guide delivery plans addressing potential neonatal complications linked to the relevant monogenic condition⁴⁹. This study had the limitation of focusing on cfDNA screening tests in pregnancies already identified as being at elevated risk for fetal genetic conditions. This approach is advantageous for enriching the cohort with affected fetuses, thereby facilitating an effective evaluation of the test's overall sensitivity, a key parameter for screening tests. However, it leaves the performance of the test in a general obstetric population unexamined. The prior risk in the general population is expected to be significantly lower than in this high-risk cohort, a factor that could substantially impact the PPVs of the test, particularly for ultra-rare genetic conditions. It should be noted that false-positive prenatal cfDNA screening results are not uncommon for chromosomal anomalies, but its performance on dominant monogenic conditions exhibits an elevation in accuracy, at least for high-risk pregnancies²³. Consistent with this, we have not observed false results for monogenic conditions in this cohort, in which all 37 positive findings in single genes and 966 negative cases were confirmed by diagnostic testing. Conversely, this study identified eight cases that yielded false results for an euploidies, most likely attributable to confined placental mosaicism or divergent genomic content between the fetus and the placenta (Extended Data Table 5). Again, these observations and resultant generalizations require further validation through larger-scale cohort studies in a broader population. Although the PPVs were reasonably high for monogenic conditions in this study, interpreting its NPVs necessitates a heightened level of scrutiny. Some monogenic conditions, caused by analytically difficult variants other than simplex short sequence variants (for example, exonic CNVs, large indels and variants obscured by homologous or repeat sequences), might elude detection using standard sequencing techniques. Consequently, the clinical NPVs for certain single-gene conditions (for example, those caused by pathogenic variants in PKD1) examined in this study may have been inadvertently overestimated. Future investigations using locus-specific analytical methods may assist in further refining these clinical NPVs, particularly for genes anticipated to underperform (Extended Data Table 2). Irrespective of the analytical tools used in the cfDNA assay, comprehensive pretest genetic counseling remains essential to clarify for patients that this test is a screening, not a definitive diagnostic procedure. Given that the screening is performed on fetal cfDNA originating from the placenta rather than the fetus itself, a small, yet distinct possibility persists of carrying an affected fetus even if screening test results are negative. This study was observational in design to minimize potential adverse effects on pregnancy management, similar to previous investigations that assessed the clinical validity of prenatal cfDNA screening on targeted conditions^{14,15}. Unlike typical prenatal cfDNA screenings that aim for prompt results to guide further invasive diagnostic testing, this study reported the cfDNA screening results after they were confirmed by diagnostic tests. These diagnostic tests were initiated based solely on other clinical indications (for example, fetal ultrasound abnormalities) as part of the standard of care. As a result, the cfDNA screening in this study is expected to have minimal impact on clinical decision-making in pregnancy management. Future interventional studies shall examine the implications of this screening test on both prenatal and postnatal care, particularly when it is administered during early gestational periods with rapid result turnaround. Prenatal cfDNA screening for chromosomal abnormalities (for example, Down syndrome) was historically offered to pregnant women of advanced maternal age (≥ 35 years old), but current guidelines recommend it to all pregnancies irrespective of the mother's age 50 . The correlation between the elevated
occurrence of de novo single-gene variants and increased paternal age has also been well demonstrated 46,47 . Further research in larger populations is necessary before advocating the broad application of a comprehensive prenatal cfDNA screening covering monogenic conditions to pregnancies involving older parents or indeed to all pregnancies. The main goal of this study was to evaluate a comprehensive screening method within high-risk pregnancies and ascertain the clinical validity and increased detection rate for multiple types of genetic variants relative to conventional methods. It is noteworthy that a large proportion of the pregnant women involved in this study were inclined to accept the comprehensive screening, influenced by their awareness of abnormal fetal findings. Because monogenic conditions can have extreme phenotypic and genetic heterogeneity, it is vital to exercise caution when extending an expanded screening to the general obstetrical population. Therefore, it is imperative to establish more selective inclusion criteria for specific monogenic conditions as we aim to extend our research to a more diverse demographic. To facilitate this, we propose a clinical prioritization framework called 'SEPH,' which focuses on the following four key elements: severe outcome, early onset, prevalent incidence and high analytical performance (Extended Data Table 2). First, the condition under consideration should result in severe outcomes such as reduced lifespan, impaired mobility, intellectual disability, malformations, sensory impairment or immunodeficiency, with minimal phenotypic variability. This ensures that the identified conditions are most likely substantial and exhibit consistent characteristics, facilitating reliable predictions. Second, the onset of the condition should typically occur during infancy or childhood. Third, population prevalence data should be available that allows an accurate assessment of condition risk before and after the screening test. Conditions of higher prevalence should be prioritized to enhance cost-effectiveness. Finally, a screening test's high analytical sensitivity is crucial, ensuring that it can detect most pathogenic variants in the candidate gene. Following these criteria proposed in this study, priority was given to 37 genes (Extended Data Table 2). The rest of the genes are assigned low priority and can generally be excluded from screening in the broader population. Exceptions may be considered in special cases where invasive diagnostic procedures are declined, making prenatal cfDNA analysis the sole avenue for optimized perinatal management⁴⁹. The SEPH framework highlights differing principles for condition selection in diverse patient populations that will guide our future population studies as a preliminary measure, using structured approaches in new screening method development^{51,52}. The ultimate aim is to evolve into an evidence-based, quantifiable and objective methodology for the refinement of the abovementioned analytical elements. These include the appropriate quantification and categorization of condition severity for inclusion criteria, along with the formulation of robust, condition-specific guidelines for interpreting sequence variants in a prenatal setting. Achieving this objective requires extensive collaboration among clinical specialists, as demonstrated by ClinGen gene and condition curation studies, as well as the development of condition-specific sequence interpretation guidelines^{53,54}. Beyond the analytical considerations, a comprehensive evaluation and resolution of various factors are imperative before implementing expanded prenatal cfDNA screening in the general obstetrical population. These encompass clinical utility validation, equitable test access, robust genetic counseling, informed public policy development, financial sustainability and the addressing of ethical and psychosocial implications ⁵⁵⁻⁵⁷. Among these factors, genetic counseling is pivotal for the success of a prenatal screening program, as it aids expectant parents in making informed decisions about testing options and ensures accurate interpretation of test results. As demonstrated in the development of other new genetic tests, tackling the abovementioned complex issues before any clinical implementation will require rigorous studies and strong interdisciplinary collaboration ⁵⁸. In summary, this prospective, multicenter cohort study comparing cfDNA screening and diagnostic testing results supports the clinical validity of a comprehensive prenatal cfDNA screening including three of the most frequent causes of human genetic conditions—aneuploidies, microdeletions and monogenic variants. Given its reasonable accuracy and substantially improved detection rate, an expanded prenatal cfDNA screening merits consideration for further exploration as a tool for the noninvasive evaluation of fetal risks of heterogeneous genetic conditions. ### **Online content** Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41591-023-02774-x. ### References - Congenital disorders. WHO https://www.who.int/news-room/ fact-sheets/detail/birth-defects (2023). - Mai, C. T. et al. National population-based estimates for major birth defects, 2010–2014. Birth Defects Res. 111, 1420–1435 (2019). - Bacino, C. A. Congenital anomalies: epidemiology, types, and patterns. *UpToDate* https://www.uptodate.com/contents/ birth-defects-epidemiology-types-and-patterns (2023). - 4. Moore, K. L., Persaud, T. V. N. & Torchia, M. G. *The Developing Human: Clinically Oriented Embryology* (Elsevier Health Sciences, 2018). - Antonarakis, S. E. Carrier screening for recessive disorders. Nat. Rev. Genet. 20, 549–561 (2019). - American College of Obstetricians and GynecologistsACOG practice bulletin no. 27: clinical management guidelines for obstetrician-gynecologists. Prenatal diagnosis of fetal chromosomal abnormalities. Obstet. Gynecol. 97, (2001). - Weatherall, D. J. Single gene disorders or complex traits: lessons from the thalassaemias and other monogenic diseases. BMJ 321, 1117–1120 (2000). - Van El, C. G. & Cornel, M. C. Genetic testing and common disorders in a public health framework: recommendations of the European Society of Human Genetics. Eur. J. Hum. Genet. 19, S1– S5 (2011). - Lo, Y. M. et al. Presence of fetal DNA in maternal plasma and serum. Lancet 350, 485–487 (1997). - Chiu, R. W. et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. *Proc. Natl Acad. Sci. USA* 105, 20458–20463 (2008). - Pergament, E. et al. Single-nucleotide polymorphism-based noninvasive prenatal screening in a high-risk and low-risk cohort. Obstet. Gynecol. 124, 210–218 (2014). - Sentilhes, L., Salomon, L. J. & Vayssiere, C. Cell-free DNA analysis for noninvasive examination of trisomy. N. Engl. J. Med. 373, 2581–2582 (2015). - Snyder, M. W. et al. Copy-number variation and false positive prenatal aneuploidy screening results. N. Engl. J. Med. 372, 1639–1645 (2015). - Bianchi, D. W. et al. DNA sequencing versus standard prenatal aneuploidy screening. N. Engl. J. Med. 370, 799–808 (2014). - Norton, M. E. et al. Cell-free DNA analysis for noninvasive examination of trisomy. N. Engl. J. Med. 372, 1589–1597 (2015). - Rafalko, J. et al. Genome-wide cell-free DNA screening: a focus on copy-number variants. Genet. Med. 23, 1847–1853 (2021). - Liang, D. et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes. Genet. Med. 21, 1998–2006 (2019). - Dar, P. et al. Cell-free DNA screening for prenatal detection of 22q11.2 deletion syndrome. Am. J. Obstet. Gynecol. 227, 79.e1–79. e11 (2022). - Saito, H., Sekizawa, A., Morimoto, T., Suzuki, M. & Yanaihara, T. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. *Lancet* 356, 1170 (2000). - Chitty, L. S. et al. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma. Ultrasound Obstet. Gynecol. 37, 283–289 (2011). - Amicucci, P., Gennarelli, M., Novelli, G. & Dallapiccola, B. Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin. Chem. 46, 301–302 (2000). - Chitty, L. S. et al. Safe, accurate, prenatal diagnosis of thanatophoric dysplasia using ultrasound and free fetal DNA. Prenat. Diagn. 33, 416–423 (2013). - Chitty, L. S. et al. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. *Prenat. Diagn.* 35, 656–662 (2015). - Mellis, R., Chandler, N., Jenkins, L. & Chitty, L. S. The role of sonographic phenotyping in delivering an efficient noninvasive prenatal diagnosis service for FGFR3-related skeletal dysplasias. *Prenat. Diagn.* 40, 785–791 (2020). - Mohan, P. et al. Clinical experience with non-invasive prenatal screening for single-gene disorders. *Ultrasound Obstet. Gynecol.* 59, 33–39 (2022). - Zhang, J. et al. Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat. Med. 25, 439–447 (2019). - Adams, S. et al. Single gene non-invasive prenatal screening for autosomal dominant conditions in a high-risk cohort. *Prenat. Diagn.* 33, 416–423 (2023). - Yang, Y. et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N. Engl. J. Med. 369, 1502–1511 (2013). - Yang, Y. et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312, 1870–1879 (2014). - Petrovski, S. et al. Whole-exome sequencing in
the evaluation of fetal structural anomalies: a prospective cohort study. *Lancet* 393, 758–767 (2019). - Lord, J. et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. *Lancet* 393, 747–757 (2019). - Krakow, D., Lachman, R. S. & Rimoin, D. L. Guidelines for the prenatal diagnosis of fetal skeletal dysplasias. *Genet. Med.* 11, 127–133 (2009). - Xu, C. et al. Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening. Cell Discov. 8, 109 (2022). - Kitzman, J. O. et al. Noninvasive whole-genome sequencing of a human fetus. Sci. Transl. Med. 4, 137ra176 (2012). - 35. Hall, M. P. et al. Non-invasive prenatal detection of trisomy 13 using a single nucleotide polymorphism- and informatics-based approach. *PLoS ONE* **9**, e96677 (2014). - Yu, S. C. et al. Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing. *Proc. Natl Acad. Sci. USA* 111, 8583–8588 (2014). - Sun, K. et al. Size-tagged preferred ends in maternal plasma DNA shed light on the production mechanism and show utility in noninvasive prenatal testing. Proc. Natl Acad. Sci. USA 115, E5106–E5114 (2018). - Koumbaris, G. et al. Targeted capture enrichment followed by NGS: development and validation of a single comprehensive NIPT for chromosomal aneuploidies, microdeletion syndromes and monogenic diseases. Mol. Cytogenet. 12, 48 (2019). - 39. Rabinowitz, T. et al. Bayesian-based noninvasive prenatal diagnosis of single-gene disorders. *Genome Res.* **29**, 428–438 (2019). - Serpas, L. et al. Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA. *Proc. Natl Acad. Sci. USA* 116, 641–649 (2019). - Che, H. et al. Noninvasive prenatal diagnosis by genome-wide haplotyping of cell-free plasma DNA. Genet. Med. 22, 962–973 (2020). - 42. Lebo, R. V. et al. Discordant circulating fetal DNA and subsequent cytogenetics reveal false negative, placental mosaic, and fetal mosaic cfDNA genotypes. *J. Transl. Med.* **13**, 260 (2015). - Brison, N. et al. Predicting fetoplacental chromosomal mosaicism during non-invasive prenatal testing. *Prenat. Diagn.* 38, 258–266 (2018). - 44. Kim, Y. J., Lee, J. E., Kim, S. H., Shim, S. S. & Cha, D. H. Maternal age-specific rates of fetal chromosomal abnormalities in Korean pregnant women of advanced maternal age. *Obstet. Gynecol. Sci.* **56**, 160–166 (2013). - Zhu, H. et al. Efficiency of non-invasive prenatal screening in pregnant women at advanced maternal age. BMC Pregnancy Childbirth 21, 86 (2021). - Toriello, H. V. & Meck, J. M. Statement on guidance for genetic counseling in advanced paternal age. Genet. Med. 10, 457–460 (2008). - 47. Janeczko, D., Hołowczuk, M., Orzeł, A., Klatka, B. & Semczuk, A. Paternal age is affected by genetic abnormalities, perinatal complications and mental health of the offspring. *Biomed. Rep.* 12, 83–88 (2020). - 48. Larroya, M. et al. Have maternal or paternal ages any impact on the prenatal incidence of genomic copy number variants associated with fetal structural anomalies? *PLoS ONE* **16**, e0253866 (2021). - Nwakalor, C., Said-Delgado, S., Krinshpun, S. & Velinov, M. De novo HRAS gene mutation associated with Costello syndrome identified by non-invasive cell-free fetal DNA screening. *Prenat*. *Diagn.* 41, 11–14 (2021). - American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Obstetrics; Committee on Genetics; Society for Maternal-Fetal Medicine Screening for fetal chromosomal abnormalities: ACOG practice bulletin, number 226. Obstet. Gynecol. 136, e48–e69 (2020). - Goldberg, J. D., Pierson, S. & Johansen Taber, K. Expanded carrier screening: what conditions should we screen for? *Prenat. Diagn.* 43, 496–505 (2023). - 52. Lazarin, G. A. et al. Systematic classification of disease severity for evaluation of expanded carrier screening panels. *PLoS ONE* **9**, e114391 (2014). - 53. Strande, N. T. et al. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. *Am. J. Hum. Genet.* **100**, 895–906 (2017). - 54. Gelb, B. D. et al. ClinGen's RASopathy Expert Panel consensus methods for variant interpretation. *Genet. Med.* **20**, 1334–1345 (2018) - 55. Botkin, J. R. et al. Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents. *Am. J. Hum. Genet.* **97**, 6–21 (2015). - Andrews, L. B., Fullarton, J. E., Holtzman, N. A. & Motulsky, A. G. (eds.). Assessing Genetic Risks: Implications for Health and Social Policy (National Academies Press, 1994). - 57. Minear, M. A., Alessi, S., Allyse, M., Michie, M. & Chandrasekharan, S. Noninvasive prenatal genetic testing: current and emerging ethical, legal, and social issues. *Annu. Rev. Genomics Hum. Genet.* **16**, 369–398 (2015). - Polygenic Risk Score Task Force of the International Common Disease Alliance Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. *Nat. Med.* 27, 1876–1884 (2021) **Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. © The Author(s), under exclusive licence to Springer Nature America, Inc. 2024 Jinglan Zhang ® ^{1,2,3,4,12} ⋈, Yanting Wu ® ^{1,5,12}, Songchang Chen^{1,12}, Qiong Luo^{2,6,12}, Hui Xi^{7,12}, Jianli Li⁴, Xiaomei Qin⁴, Ying Peng⁷, Na Ma⁷, Bingxin Yang⁸, Xiang Qiu⁵, Weiliang Lu⁵, Yuan Chen^{2,6}, Ying Jiang^{2,6}, Panpan Chen^{2,6}, Yifeng Liu ® ^{2,6}, Chen Zhang¹, Zhiwei Zhang⁴, Yu Xiong⁵, Jie Shen⁵, Huan Liang⁵, Yunyun Ren⁵, Chunmei Ying⁵, Minyue Dong^{2,6}, Xiaotian Li⁵, Congjian Xu^{1,5}, Hua Wang^{7,9} ⋈, Dan Zhang ® ^{2,6} ⋈, Chenming Xu ® ^{1,5} ⋈ & Hefeng Huang ® ^{1,2,5,8,10,11} ⋈ ¹Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China. ²Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China. ³School of Medicine, Shanghai Jiao Tong University, Shanghai, China. ⁴Beijing BioBiggen Technology Co., Ltd, Beijing, China. ⁵Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China. ⁶Key Laboratory of Women's Reproductive Health of Zhejiang Province, and Zhejiang Provincial Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China. ⁷National Health Commission (NHC) Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China. ⁸International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. ⁹NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China. ¹⁰Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China. ¹¹Shanghai Frontiers Science Research Center of Reproduction and Development, Shanghai, China. ¹²These authors contributed equally: Jinglan Zhang, Yanting Wu, Songchang Chen, Qiong Luo, Hui Xi. ⊠e-mail: Jinglanzhang@foxmail.com; wanghua213@aliyun.com; zhangdan@zju.edu.cn; chenming_xu2006@163.com; huanghefg@hotmail.com ### Methods #### Study design This prospective cohort was an observational study designed to evaluate the clinical validity of a comprehensive prenatal cfDNA screening approach for a broad range of chromosomal and monogenic conditions by comparing the cfDNA and genetic diagnostic results. The screening panel included a total of seven frequent aneuploidies and nine microdeletion syndromes (Extended Data Table 1). In addition, dominant monogenic conditions associated with 75 genes were selected (Extended Data Table 2). To assess the performance metrics of the prenatal cfDNA screening test, cases were followed up to compare the screening results with the prenatal or postnatal diagnostic testing results. All participants were prospectively enrolled and followed up from 24 April 2021 to 10 September 2022 with the screening test being administered before diagnostic testing. This investigation was observational rather than interventional in nature, and the invasive diagnostic procedures were initiated solely based on clinical indications. In addition, the screening results were not reported unless they were consistent with those of diagnostic tests. All clinical pregnancy management decisions were based on the results of diagnostic testing, rather than the comprehensive cfDNA screening results, in accordance with current standard practice guidelines. None of the participants in the cohort had been involved in our previous studies. This study has been reviewed and approved by the internal review board at the Obstetrics and Gynecology Hospital of Fudan University (2020-178). This clinical study led by the Obstetrics and Gynecology Hospital of Fudan University has received approval for the collection of human genetic resources in China from the Ministry of Science and Technology of China (2021-CJ0599). The trial registration number was ChiCTR2100045739 with a published study protocol⁵⁹. ### Patient involvement and participant eligibility Patients were involved in the conduct of this research during their visit seeking prenatal care. During the recruitment stage, the design, methods and outcome of the research and testing were informed by discussions with patients through a structured interview. Between
24 April 2021 and 10 September 2022, 1,191 pregnant women were consecutively enrolled and followed up from three tertiary hospitals in different provinces of China. Eligible women were ≥20 years old with a singleton pregnancy of ≥12 weeks gestation (in compliance with national regulation on the gestational age requirement for prenatal cfDNA screening in China) who did not undergo any prior prenatal diagnosis. Pregnancies with fetal structural anomalies (including nuchal translucency ≥ 3 mm), high-risk results from standard cfDNA screening or maternal serum screening\or previous pregnancy history suggestive of elevated risks for genetic conditions were assessed for enrollment. The enrollment for cases with isolated increased nuchal translucency was capped at 20% of the total with abnormal ultrasound findings. Exclusion criteria encompassed pregnant women with an age <20 years old, gestational age <12 weeks, one of the parents with or suspected to have a chromosomal abnormality, recent blood or organ transplantation, clinical history indicated for diagnostic testing of a known familial variant(s) in the panel and maternal malignancy during pregnancy. Genetic diagnosis was made by the analysis of samples collected from chorionic villus sampling, amniocentesis, products of conception or cord blood. Cases with no diagnostic testing results, failing assay quality control or enrolled not compliant with the inclusion criteria were also excluded. Written consent was received from all participants. Each participant provided consent for the publication of scientific findings, which may include genetic and clinical diagnoses, pregnancy outcomes and related demographic data such as age and gestational age. ### The library preparation process for cfDNA sequencing The comprehensive prenatal cfDNA screening used in this study was developed by Beijing BioBiggen Technology and involved a targeted sequencing method termed COATE-seq, as described previously 33 . A total of $10 \, \text{ml}$ of peripheral blood was collected from each participant, and plasma was separated by a standard two-step centrifugation process. A minimum of $1.8 \, \text{ml}$ of maternal plasma was first isolated from whole blood by centrifuging the collection tube at $1,600g \, \text{for} \, 15 \, \text{min}$ at a temperature of $4 \, ^{\circ}\text{C}$. The plasma was then subjected to a second round of centrifugation at $16,000g \, \text{for} \, 10 \, \text{min}$ at $4 \, ^{\circ}\text{C}$. The extraction of cfDNA was executed using the Magnetic Serum/Plasma Circulating DNA Maxi Kit (Tiangen). The extracted cfDNA was first end-repaired following the manufacturer protocol (Nanodigbio), before being ligated at 20 °C for 15 min using adapters containing unique molecular indexes. A PCR was initiated to introduce the sample barcode, with the following parameters: initial denaturation at 98 °C for 2 min, followed by nine cycles of denaturation at 98 °C for 15 s, annealing at 60 °C for 30 s and extension at 72 °C for 30 s. This was finalized by an extension step at 72 °C for 2 min. The resultant PCR products were then quantified using Qubit 1× dsDNA HS Assay Kits (Invitrogen). For target enrichment, 12–36 samples were pooled and incubated at 65 °C for 16 h with hybridization probes per manufacturer protocol (Heristar). The DNA was then recovered, washed and purified with the Dynamag-270 magnetic beads (Invitrogen). Another PCR was performed to create the sequencing library, which involved an initial denaturation at 98 °C for 2 min, followed by 12 cycles of denaturation at 98 °C for 15 s, annealing at 60 °C for 30 s and extension at 72 °C for 30 s, before ending with a final extension at 72 °C for 2 min. Next, single-stranded circular DNA libraries were generated using the MGI-Easy Circularization Kit (MGI). The circular DNA was then converted into DNA nanoballs via rolling circle amplification, as per MGI's protocol. The concentration of the final sequencing library was measured using Qubit ssDNA Assay Kits (Invitrogen). The completed DNA library was finally sequenced on an MGISEQ-2000 sequencer from MGI, China, using a 2 × 100 paired-end mode. # The cfDNA analysis for single-gene variants, microdeletions and an uploidies The minimum threshold for sequencing depth was 200× for single-gene sequence variant calling. The mean coverage for the genes of interest across all samples was 1,387×, and more than 99.3% of the targeted regions on average in all samples met the minimum coverage requirement of 200×. The average gene-specific coverage meeting the minimum sequencing depth threshold (percentage of target regions with >200×) is provided in Extended Data Table 2. Mutect2 was used as the primary algorithm for variant calling, with the variant allele fraction threshold configured to a lower bound of zero (https://gatk. broadinstitute.org/hc/en-us/articles/360037593851-Mutect2). Two additional filtering methods were used in the identification of fetal monogenic variants following variant calling—allele-count distribution (ACD) and fetal-maternal insert-size distribution (FMID) as previously described³³. For a specific variant under evaluation, it was considered more likely of fetal origin if its allele fraction (or alternative-allele count) fell within the expected range correlated with fetal fraction. If the log cumulative distribution function value for the β-binomial distribution ranged between -10 and -0.001, the variant passed the ACD filter. In the FMID filter, the insert size of each read containing an alternative allele was assessed to exclude reads with proximal insert sizes harboring the reference allele. Subsequently, the insert sizes of all remaining reads with either reference or alternative alleles were compared using the four statistical tests: Welch's t test, Kolmogorov-Smirnov test, Kruskal-Wallis *H* test and Mann-Whitney *U* test. In this phase, variants present on fragments with alternative alleles that exhibited statistically different lengths compared to those with reference alleles were retained (the minimum P value of the above four tests was ≤0.001). Next, to mitigate the risk of over-filtering variants, particularly in samples with low fetal fraction, a median insert-size comparison was used to preserve variants present on shorter fragments where the median length of alternative-allele fragments was less than that of reference-allele fragments. Variants that failed to pass both the above ACD and FMID filters were marked as most likely of maternal origin or sequencing artifacts. The test detects monogenic single-nucleotide variants and ≤3 bp insertions, deletions or indels in the coding exons and 10 bp into the intronic regions adjacent to the exon/intron junctions of targeted genes. It does not detect sequence variants in nontarget regions, exonic CNVs, dynamic variants, complex recombination or other structural variants. Variants located in regions complicated by high repetitive sequences, high GC content, homologous sequences or pseudogenes may not be detected. The test only reports pathogenic or likely pathogenic variants associated with severe outcomes, adhering to the ACMG guidelines⁶⁰, and excludes reporting benign, likely benign and variants of uncertain significance. The detection rate for each gene by the sequence analysis is listed in Extended Data Table 2. This test identifies target whole chromosome abnormalities but may not detect smaller aberrations within these chromosomes as described previously³³. Similarly, the test detects target microdeletions covering the entire critical regions associated with the conditions and smaller deletions within these regions may not be detected. #### The detection of maternal variants The analysis includes a fragment length assessment, considering that maternal cfDNA typically presents longer fragment lengths in comparison to fetal cfDNA. When a variant is found on cfDNA fragments with lengths surpassing those of the reference allele fragments, an examination of maternal leukocytes is undertaken to investigate the possibility of maternal germline or mosaicism carrier status. Moreover, if the monogenic allelic fraction exceeds two s.d. above the expected fetal variant level, a maternal leukocyte test is also conducted. The s.d. for the fetal allelic fraction is calculated based on the single-nucleotide polymorphisms included in the chromosomal copy number analysis assay. The maternal test involves using cells collected from the buffy coat during plasma isolation. Regardless of the results from the above maternal test, a genetic diagnostic test for the fetus is always recommended. # Diagnostic testing for singe-gene conditions, microdeletions and an uploidies All participants in the final cohort (n = 1,090) who yielded either negative or positive cfDNA sequencing results had undergone at least one diagnostic test, using genomic DNA extracted from chorionic villi, amniocytes, cord blood or the product of conception. Different diagnostic tests were used as the reference methods for the targeted singe-gene conditions, microdeletions and aneuploidies in the prenatal cfDNA screening as described below. NGS gene panel. This test uses a library construction kit (Nanodigmbio) and a targeted capture hybridization kit (IDT) for the preparation of DNA sequencing libraries. High-throughput sequencing is performed on the MGI-2000 (MGI) sequencers. All exonic regions and 10 bp intronic regions located both upstream and downstream of the exon-intron junctions of those 75 genes (the RefGene transcripts used in the Human Gene Mutation Database) included in the prenatal cfDNA screening test were sequenced. This test has an average sequencing depth of over 500× in targeted regions, with ≥99% of the target regions sequencing depth of over 20×. This test detects sequence variants including single-nucleotide variants and insertions, deletions or indels up to 20 nucleotides at an accuracy ≥99%. Dynamic
variants, rearrangement variants and complex recombination variants are not detected. Reportable variants detected by NGS that are confounded by pseudogenes or homologous sequences detected in the NGS test are confirmed by locus-specific amplicon Sanger sequencing. WES. This test employs the KAPA HyperExome (Roche) kit to capture and enrich DNA from the exon and neighboring splicing regions of the target genes. MGISEQ-2000 sequencing platform is used for sequencing. This test has an average sequencing depth of over 180× in targeted regions, with ≥95% of the target regions sequencing depth of over 20×. This test detects sequence variants including single-nucleotide variants and insertions, deletions or indels up to 20 nucleotides at an accuracy ≥99%, as well as exonic deletions at an accuracy ≥95%. This test only reports pathogenic, likely pathogenic, or variants of unknown clinical significance, not reporting likely benign or benign variants. Dynamic variants, rearrangement variants and complex recombination are not detected. This test may detect aneuploidies, absence of heterozygosity (AOH) ≥5 mb and certain dynamic variants with limited accuracy. This method cannot detect large fragment genomic CNVs (deletion/ duplication interval <1 mb) and genomic structural variations (such as translocations, inversions, <5 mb AOH). This test does not detect all variants affected by highly repetitive low-complexity regions or pseudogenes. Chromosomal microarray analysis. This test uses the Affymetrix CytoScan HD Array chip (Thermo Fisher Scientific), containing about 1.95 million CNV markers and approximately 750,000 SNP markers, for whole-genome chromosomal aneuploidies, microdeletions, microduplications and terminal deletions. This test can detect AOH. This test does not identify chromosomal balanced translocations, inversions, insertions or low percentage mosaicism. The test results are filtered using ChAS software and do not report duplications less than 500 kb, deletions less than 300 kb, polymorphic copy number changes indicated by public databases or AOH segments less than 10 mb. **Chromosome CNV-seq.** The DNA is analyzed by NGS on an MGI (MGI) or Illumina platform (Illumina). This test detects an euploidy of autosomes and sex chromosomes, deletions (≥ 1 mb), duplications (≥ 2 mb) and mosaicism ($\geq 30\%$). This test does not detect uniparental disomy or AOH. **Karyotyping.** The karyotype analysis involves the collection of cultured cells subjected to chromosomal preparation and G-banding (320 bands). The tests detect both numerical and structural changes of autosomes and sex chromosomes. This test may not detect microdeletions, duplications or abnormalities at the single-gene level. #### **Study outcomes** The outcomes of the study were the clinical validity of an expanded prenatal cfDNA screening and its detection rate for different types of genetic conditions causing fetal anomalies. Results for both screening and diagnostic testing performed on chorionic villus, amniocentesis, cord blood or products of conception were collected and compared for qualified participants. The clinical validity was measured by calculating the screening test sensitivity, specificity, PPV, NPV and the AUC. Only pregnant women who underwent diagnostic genetic testing were included in the study results, while those lacking any genetic diagnostic testing results were excluded. The detection rates of a diagnostic genetic variant associated with aneuploidies, microdeletions and monogenic conditions were measured for the entire cohort and with respect to different indications. ### Postnatal follow-up The study collected the postnatal follow-up data for the pregnancy outcomes of the participants by reviewing medical records, which included miscarriages, elective abortions, stillbirths and livebirth deliveries. When medical records of pregnancy outcomes were not available in the participating hospitals, participants were contacted by phone up to three attempts and up until 6 weeks after the expected delivery date. Pregnancy outcomes and clinical examination results were evaluated to examine if they were consistent with the genetic diagnosis. #### **Data handling** Variant interpretation was carried out by at least one laboratory director certified by the American Board of Medical Genetics and Genomics. Only pathogenic and likely pathogenic variants associated with severe outcomes were reported, which were scored following well-established variant assessment criteria 60,61. Positive variants were reported only when they were consistent with diagnostic testing. Experienced clinical geneticists provided post-test genetic counseling to participants regarding the interpretation of diagnostic results, the impact of these positive results and potential management options. Participants' prenatal screening and diagnostic test results, clinical examination findings and images and other relevant information were collected from the medical records and used for statistical analysis. Microsoft Excel was used for the clinical data collection. #### Statistical analysis The diagnostic testing results were compared to the prenatal cfDNA screening results to assess its clinical validity. Assay performance metrics were demonstrated by sensitivity, specificity, PPV and NPV, according to each category of abnormalities. Data were analyzed with respect to different indications. Before the start of this study, we performed a power analysis and planned to enroll at least 1,000 participants from whom we expected to detect at least 25 cases affected by the targeted chromosomal and monogenic conditions. This estimation was based on the detection rate among pregnancies with similar indications. The sample size in this study would allow a probability of 95% or above to observe a possible measuring error at the case level for both the chromosomal and monogenic conditions. Average ages were compared using a two-tailed t test for samples with unequal variances. For all calculations, P values less than 0.05 were considered statistically significant. The Clopper-Pearson method was used to calculate the test performance including sensitivity, specificity and positive and NPVs with exact 95% CIs. AUC was used to evaluate the prenatal cfDNA screening performance. The ROC curve was generated by computing sensitivity and specificity at each cutoff using Scikit-learn RocCurve-Display (https://scikit-learn.org/). #### **Reporting summary** Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article. ## Data availability The demographic data, clinical history, prenatal cfDNA screening, diagnostic test results and the diagnostic test methodologies of all 1,090 participants in the final cohort are within the paper and the Extended Data. All the pathogenic single-gene variants and the key phenotypes of the participants are available in the ClinVar database at https://www. ncbi.nlm.nih.gov/clinvar/submitters/508997/. The raw data files for all 1,090 participants are securely stored in an environment compliant with patients' privacy protection regulations within our laboratory and will be maintained for a minimum of ten years following publication. Access to these raw data files, unfiltered cfDNA gene sequencing data (VCF files) and locus-specific diagnostic sequencing results is available upon request from the corresponding author, J.Z. This process is to assure that patients' data privacy will be safeguarded and that the data will be used exclusively for noncommercial academic research purposes. All requests for data access must originate from an academic institution and be accompanied by verifiable affiliation (for example, a publicly accessible research investigator profile on the institution's website). Upon receipt of a qualified request, it will undergo review by a Data Privacy Committee (DPC), composed of two senior investigators from the study and an external reviewer, to verify that the data will be used exclusively for noncommercial, academic research purposes. After DPC approval, the execution of a Data Transfer Agreement is required, which will explicitly stipulate nondisclosure to third party and that the data are to be used solely for noncommercial, academic research activities. Qualified requests will be processed within a 3-week time frame. The hg38 reference genome sequence can be obtained at https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40/. ## **Code availability** Customized computing code used in this study is available at https://github.com/Jinglan1/NIPS2/. Raw FASTQ were filtered and UMI-preprocessed using FASTP 0.21.0, https://github.com/OpenGene/fastp. The clean FASTQ files were aligned to hg38 human reference using BWA 0.7.17-r1188 (https://github.com/lh3/bwa) and then sorted by Samtools 1.9 (https://github.com/samtools/samtools/releases/). Consensus BAM files were generated by Gencore 0.15.0 and then finalized by BaseRecalibrator and ApplyBQSR GATK 4.1.8.0 followed by variant calling (https://gatk.broadinstitute.org). Raw variants were annotated by Annovar v2019-10-24 (https://annovar.openbioinformatics.org/). #### References - Xu, C. et al. Comprehensive non-invasive prenatal screening for pregnancies with elevated risks of genetic disorders: protocol for a prospective, multicentre study. *BMJ Open* 11, e053617 (2021). - Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). - Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020). ####
Acknowledgements We would like to thank M. He, X. Liu, X. Xu, R. Jing, D. Pan, X. Zhao, J. Wang and X. Cai for their assistance in sample processing in the laboratory. We are grateful for X. Zhai's invaluable insights and guidance in the formulation of clinical prioritization framework for conditions to be screened in the general population. We appreciate and thank H. Zhang's administrative efforts in the coordination of sample collection and clinical follow-up. We thank J. Semotok, X. Luo, C. Wang and W. Jiang for their critical reading of the manuscript. The clinical study was supported by the National Key Research and Development Program of China (2023YFC2705600, 2023YFC2705601, 2020YFA0804000, 2020YFA0804001, 2022YFC2703500, 2021YFC2700701, 2018YFC1002804, 2021YFC2701002 and 2022YFC2703701) and BioBiggen Technology Co. We are indebted to the funding agencies to support the follow-up study from the National Natural Science Foundation of China (82071661, 81661128010, 82088102, 82171686, 81971344, 82171677, 82192864, 81901495, 81974224 and 82394424), Technology Innovation Project of Shanghai Shenkang Hospital Development Center (SHDC2020CR1008A, SHDC12019107, SHDC12023120 and SHDC12018X17), the International Science and Technology Collaborative Fund of Shanghai (18410711800), CAMS Innovation Fund for Medical Sciences (2019-12M-5-064), Program of Shanghai Academic Research Leader (20XD1424100), Outstanding Youth Medical Talents of Shanghai Rising Stars of Medical Talent Youth Development Program, Shanghai Frontiers Science Research Base of Reproduction and Development, the Shanghai Municipal Commission of Science and Technology Program (21Y21901002, 22S31901500), Shanghai Municipal Health Commission (GW-10.1-XK07), Clinical Research Project of Shanghai Municipal Health Commission (201840210, 20184Y0349 and 202140110), Key Discipline Construction Project (2023-2025) of Three-Year Initiative Plan for Strengthening Public Health System Construction in Shanghai (GWVI-11.1-35), Major Scientific and Technological Projects for collaborative prevention and control of birth defects in Hunan Province (2019SK1010) and the Key Research and Development Program of Zhejiang Province (2021C03098). ### **Author contributions** H.H., J.Z., C.-M.X., D.Z. and H.W. designed the study. H.H., J.Z., C.-M.X., D.Z., H.W., Y.W., S.C., Q.L., H.X., B.Y., C.Z., C.Y., C-J.X., J.L., J.S., M.D., N.M., P.C., W.L., X.Q., X.-M.Q., X.L., Y.L., Y.J., Y.P., Y.X., Y.C., Y.R. and Z.Z. conducted the clinical analyses. J.Z., J.L. and X-M.Q. conducted the statistical analyses. J.Z. wrote the paper. H.H., J.Z., D.Z., H.W. and C.-M.X. supervised the project. ## **Competing interests** J.Z., J.L., X.-M.Q. and Z.Z. are employees or shareholders of Beijing BioBiggen Technology or its subsidiaries and affiliates. A patent for the comprehensive noninvasive prenatal screening has been granted to the Beijing BioBiggen Technology (J.Z., J.L. and Z.Z.). The other authors declare no conflict of interest related to this work. ### **Additional information** **Extended data** is available for this paper at https://doi.org/10.1038/s41591-023-02774-x. **Supplementary information** The online version contains supplementary material available at https://doi.org/10.1038/s41591-023-02774-x. **Correspondence and requests for materials** should be addressed to Jinglan Zhang, Hua Wang, Dan Zhang, Chenming Xu or Hefeng Huang. **Peer review information** *Nature Medicine* thanks Josephine Johnston, Dena Matalon, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Anna Maria Ranzoni, in collaboration with the *Nature Medicine* team. **Reprints and permissions information** is available at www.nature.com/reprints. **Extended Data Fig. 1**| The illustration of a comprehensive prenatal cell-free DNA screening test. The comprehensive prenatal cfDNA screening methodology utilizes a multi-faceted approach, involving new laboratory technologies, genomic algorithms and specialized condition interpretation analytics. Top panels: the test employs a tailored sequencing library construction process that combines customized adaptors for improved ligation efficiency, molecular indexing to curtail PCR-induced errors and capture-based hybridization to reduce allele drop-out, significantly increasing overall test accuracy for different types of genetic variants. Central to the method are the coordinative allele-aware target enrichment (COATE) probes which are designed to minimize the difference in hybridization equilibrium constants between reference and alternative alleles, which may not be perfectly complementary to either the wild-type or variant allele but reduce the enrichment bias introduced by conventional probes. Middle panels: fetus-specific genomic features, including cfDNA fragment length, meiotic error origin, meiotic recombination and recombination breakpoints, are used together to discern fetal monogenic and chromosomal variants. Bottom panels: condition-specific analytics are used for the interpretation of genetic variants following the American College of Medical Genetics guidelines on the analyses of sequence variants and chromosome copy-number variations. Only those classified as pathogenic or likely pathogenic variants following these guidelines are reported. ## Extended Data Table 1 | The targeted chromosomal conditions screened | Condition | Targeted region | Prevalence ¹ | |--------------------------|-----------------|-------------------------| | Trisomy 21 | chr21 | 1:800 | | Trisomy 18 | chr18 | 1:5,000 | | Trisomy 13 | chr13 | 1:25,000 | | 45X | chrX | 1:2,000 | | 47XXX | chrX | 1:1,000 | | 47XXY | chrX, chY | 1:800 | | 47XYY | chrX, chY | 1:1,000 | | DiGeorge syndrome | chr22q11.2 | 1:4,000 | | 1p36 deletion syndrome | chr1p36 | 1:5,000 | | 2q33.1 deletion syndrome | chr2q33 | NA | | Angelman syndrome | chr15q11.2-q13 | 1:15,000 | | Prader-Willi syndrome | chr15q11.2-q13 | 1:22,500 | | Cri du Chat syndrome | chr5p15 | 1:30,000 | | Wolf-Hirschhorn syndrome | chr4p16 | 1:35000 | | Langer-Giedion syndrome | chr8q23q24 | <1:1,000,000 | | Jacobsen syndrome | chr11q23q25 | 1:75,000 | ¹Prevlance data were collected from the GeneReviews (https://www.ncbi.nlm.nih.gov/books/NBK1116/), Online Catalog of Human Genes and Genetic Disorders (https://omim.org/) and published literature when available. NA: not available. ### Extended Data Table 2 | The targeted monogenic conditions and prioritization assessment for screening | Gene | Condition | Sequencing
detection
rate ¹ | Average
gene
coverage ² | Detection rate
of cfDNA
screening | Condition
prevalence ³ | Prioritization for
general population
screening study ⁴ | |--------------|---|--|--|---|--------------------------------------|--| | BRAF | Noonan spectrum disorder, cardiofaciocutaneous syndrome | >99% | 99.2% | >98% | | _ c. ccig olddy | | BL | Noonan spectrum disorder | 92% | 99.9% | 92% | | | | IRAS | Noonan spectrum disorder, Costello syndrome | >99% | >99.9% | >99% | | | | (RAS | Noonan spectrum disorder, cardiofaciocutaneous syndrome | >99% | 99.9% | >99% | | | | ИАР2К1 | Noonan spectrum disorder, cardiofaciocutaneous syndrome | >99% | >99.9% | >99% | | | | MAP2K2 | Noonan spectrum disorder, cardiofaciocutaneous syndrome | >99% | 99.5% | >99% | | | | VRAS | Noonan spectrum disorder | >99% | >99.9% | >99% | 4-10:10,000 | S, E, P, H | | PTPN11 | Noonan spectrum disorder, LEOPARD syndrome | >99% | 99.5% | >99% | | | | RAF1 | Noonan spectrum disorder | >99% | >99.9% | >99% | | | | RIT1 | Noonan spectrum disorder | >99% | >99.9% | >99% | | | | SHOC2 | Noonan spectrum disorder | 67% | >99.9% | 67% | | | | SOS1 | Noonan spectrum disorder | >99% | 99.9% | >99% | | | | SOS2 | Noonan spectrum disorder | >99% | 99.7% | >99% | | | | VIPBL | Cornelia de Lange syndrome | 97% | 99.7% | 97% | | | | SMC1A | Cornelia de Lange syndrome | >99% | >99.9% | >99% | | | | эмсз | Cornelia de Lange syndrome | 97% | 99.9% | 97% | 1-10:100,000 | S, E, P, H | | RAD21 | Cornelia de Lange syndrome | 91% | >99.9% | 91% | 1 101100,000 | 0, 2, . , | | HDAC8 | Cornelia de Lange syndrome | 90% | >99.9% | 90% | | | | ALX4 | - · · | 90% | | 90% | | | | ILX4
ISX2 | parietal foramina | 90% | >99.9%
>99.9% | 90% | 2-7:100,000 | S, E, P, H | | | parietal foramina | | | | | | | COL1A1 | osteogenesis imperfecta | 95% | >99.9% | 95% | F 7:400 000 | 0.5.0 | | COL1A2 | osteogenesis imperfecta | 95% | 99.8% | 95% | 5-7:100,000 | S, E, P, H | | FITM5 | osteogenesis imperfecta | >99% | >99.9% | >99% | | | | OL11A1 | stickler syndrome, Marshall syndrome | 99% | >99.9% | 99% | 1:10,000 | S, E, P, H | | COL2A1 | stickler syndrome | 99% | >99.9% | 99% | | | | DKL5 | epileptic encephalopathy | 79% | 99.9% | 79% | 1:50,000 | S, E, P, H | | CHD7 | CHARGE syndrome | 98% | >99.9% | 98% | 6-12:100,000 | S, E, P, H | | PHB4 | lymphatic malformation | >99% | >99.9% | >99% | 8-9:100,000 | S, E, P, H | | GFR2 | Apert syndrome | 99% | >99.9% | 99% | 1-9:100,000 | S, E, P, H | | GFR3 | thanatophoric dysplasia, achondroplasia | 99% | 99.2% | 98% | 1-2:10,000 | S, E, P, H | | KMT2D | Kabuki syndrome | 99% | 99.3% | 98% | 2-3:100,000 | S, E, P, H | | MECP2 | Rett syndrome | 90%-95% | 99.4% | 90%-95% | 4-10:100,000 | S, E, P, H | | ISD1 | Sotos syndrome | 45%-80% | 97.1% | 44%-78% | 7-8:100,000 | S, E, P, H | | RUNX2 | cleidocranial dysplasia, Metaphyseal dysplasia | 80% | 94.3% | 76% | 1-2:100,000 | S, E, P, H | | | | | | | 1-3:100,000 | | | SOX9 | campomelic dysplasia | 90%-95% | 97.3% | 88%-92% | | S, E, P, H | | SC1 | tuberous sclerosis | 94% | >99.9% | 94% | 1-2:10,000 | S, E, P, H | | SC2 | tuberous sclerosis | 94% | >99.9% | 94% | |
S, E, P, H | | ISXL1 | Bohring-Opitz syndrome | 83% | 98.7% | 82% | <1:1,000,000 | S, E, P*, H | | CD96 | C syndrome | >99% | >99.9% | >99% | 1 - 9:1,000,000 | S, E, P*, H | | COL10A1 | metaphyseal chondrodysplasia | >99% | >99.9% | >99% | 3 - 6:1,000,000 | S, E, P*, H | | EBP . | chondrodysplasia punctata | >99% | >99.9% | >99% | 5-10:1,000,000 | S, E, P*, H | | GFR1 | trigonocephaly, Hartsfield syndrome | >99% | >99.9% | >99% | <1:1,000,000 | S, E, P*, H | | LNB | Larsen syndrome | >99% | >99.9% | >99% | 1-9:1,000,000 | S, E, P*, H | | GLI3 | Pallister-Hall syndrome | 95% | >99.9% | 95% | <1:1,000,000 | S, E, P*, H | | INRNPK | Au-Kline syndrome | 94% | >99.9% | 94% | <1:1,000,000 | S, E, P*, H | | AT6B | genitopatellar syndrome, SBBYSS syndrome | 98% | >99.9% | 98% | <1:1,000,000 | S, E, P*, H | | ISDHL | CHILD syndrome, CK syndrome | 88% | >99.9% | 88% | <1:1,000,000 | S, E, P*, H | | | | | | | | | | RERE | neurodevelopmental disorder | 95% | 99.9% | 95% | <1:1,000,000 | S, E, P*, H | | SKI | Shprintzen-Goldberg syndrome | >99% | 95.7% | >95% | <1:1,000,000 | S, E, P*, H | | SLC25A24 | fontaine progeroid syndrome | >99% | 99.9% | >99% | <1:1,000,000 | S, E, P*, H | | SMAD4 | Myhre syndrome | >99% | >99.9% | >99% | 1:1,000,000 | S, E, P*, H | | NRPB | cerebrocostomandibular syndrome | 83% | >99.9% | 83% | <1:1,000,000 | S, E, P*, H | | SPECC1L | Teebi hypertelorism syndrome 1 | >99% | >99.9% | >99% | <1:1,000,000 | S, E, P*, H | | TAT3 | autoimmune disease | 99% | >99.9% | 99% | <1:1,000,000 | S, E, P*, H | | RAF7 | cardiac, facial, and digital anomalies with developmental delay | >99% | >99.9% | >99% | <1:1,000,000 | S, E, P*, H | | BN1 | Marfan syndrome | 90%-93% | 99.8% | 90%-93% | 1-2:10,000 | E, P, H | | REM1 | trigonocephaly | 90% | >99.9% | 90% | 1-5:10,000 | E, P, H | | BR | Pelger-Huet anomaly | >99% | 99.9% | >99% | 1-2:10,000 | E, P, H | | .MNA | Hutchinson-Gilford progeria, cardiomyopathy | 99% | >99.9% | | <1:1.000.000 | E, P, H | | | CI | 000/ 000/ | . 00 00/ | 99% | 0.4.40.000 | 5 D II | | IF1
IF0 | neurotipromatosis | 60%-90% | >99.9% | 60%-90% | 3-4:10,000 | E, P, H | | IF2 | neurofibromatosis | 75% | 99.9% | 75% | .4.4.000.000 | E, P, H | | YR1 | congenital myopathy | >99% | 98.7% | >98% | <1:1,000,000 | E, P, H | | WIST1 | craniosynostosis | 72% | 69.9% | 50% | 2-4:100,000 | S, E, P | | FNB1 | craniofrontonasal dysplasia | 94% | >99.9% | 94% | NA | S, E, H | | RF | craniosynostosis, Chitayat syndrome | 94% | 99.6% | 94% | NA | S, E, H | | RKAR1A | carney complex | 60% | >99.9% | 60% | NA | S, E, H | | TH1R | metaphyseal chondrodysplasia | >99% | 96.5% | >96% | NA | S, E, H | | GFBR1 | Loeys-Dietz syndrome | >99% | 93.1% | >92% | NA | S, E, H | | GFBR2 | Loeys-Dietz syndrome | >99% | 99.9% | >99% | | S, E, H | | CF12 | craniosynostosis | 93% | >99.9% | 93% | NA | S, E, H | | CF12
IC1 | structural brain anomalies and craniosynostosis | >99% | >99.9% | | NA
NA | S, E, H | | | | | | >99% | | | | PKD1 | polycystic kidney disease | 97% | undetermined | undetermined | 1:1,000 | S, P | | PKD2 | polycystic kidney disease | 97% | 94.8% | | N1.6 | S, P | | SMAD6 | aortic valve disease, radioulnar synostosis | >99% | 92.5% | >92% | NA | E, H | | 'HH | skeletal abnormality | 81% | >99.9% | 81% | NA | E, H | Sequencing detection rate is the percentage of variants detectable by sequencing method among all pathogenic variants. The detection rate data were collected from GeneReviews (https://www.ncbi.nlm.nih.gov/books/NBK1116/) or calculated based on literature in the Human Gene Mutation Database database (https://my.qiagendigitalinsights.com/bbp/view/hgmd/pro/search_gene.php). ² The average gene-specific coverage meeting the minimum sequencing depth threshold (percentage of target regions with >200×) was provided. ³ Prevalence data were cited from GeneReviews, Orphanet (https://www.orpha.net/consor/cgi-bin/index.php), Online Catalog of Human Genes and Genetic Disorders (https://omim.org/), MedlinePlus (https://medlineplus.gov/) and published literature when available. ⁴ Clinical prioritization criteria for conditions recommended in general population screening are based on public data and the findings of this study. S: conditions with severe outcomes (for example, shortened lifespan, impaired mobility, intellectual disability, malformation, sensory impairment, immunodeficiency, etc.) and no extreme phenotypic variability. E: conditions with early onset in infancy or childhood. P: conditions with known population prevalence. Conditions with a prevalence lower than 1:100,000 are marked with * assigned with a lower priority for general population. H: a high analytical performance in the screening test. NA: not available. ## Extended Data Table 3 | The detection rate of diagnostic genetic variants across different indications | Indication | Number of cases (%) | Chromosomal conditions (%) | Monogenic conditions (%) | |---|---------------------|----------------------------|--------------------------| | Fetal structural anomalies | 876 (80.4) | 61 (7.0) | 37 (4.2) | | Lymphatic or effusion | 46 (5.3) | 15 (32.6) | 2 (4.3) | | Skeletal | 85 (9.7) | 1 (1.2) | 20 (23.5) | | Multisystem | 73 (8.3) | 14 (19.2) | 3 (4.1) | | Increased nuchal translucency | 159 (18.2) | 14 (8.8) | 4 (2.5) | | Cardiac | 174 (19.9) | 10 (5.7) | 3 (1.7) | | Brain | 91 (10.4) | 4 (4.4) | 2 (2.2) | | Craniofacial | 35 (4.0) | 2 (5.7) | 0 | | Growth restriction | 35 (4.0) | 0 | 1 (2.9) | | Renal | 108 (12.3) | 1 (0.9) | 2 (1.9) | | Spinal | 12 (1.4) | 0 | 0 | | Chest | 17 (1.9) | 0 | 0 | | Abdominal | 41 (4.7) | 0 | 0 | | Standard prenatal cfDNA screening high-risk results | 86 (7.9) | 35 (40.7) ¹ | 0 | | Maternal serum screening high-risk results | 116 (10.6) | 2 (1.7) | 0 | | Clinical history suggestive of genetic conditions | 12 (1.1) | 0 | 0 | | Total | 1,090 | 98 (9.0) | 37 (3.4) | All positive cases on standard prenatal cfDNA screening for chromosomal conditions but tested negative on the comprehensive prenatal cfDNA screening were confirmed negative by diagnostic testing. # $\textbf{Extended Data Table 4} \ | \ \textbf{Summary of fetuses affected by chromosomal conditions identified by comprehensive prenatal cfDNA screening and confirmed by diagnostic testing}$ | Subject | GA
(weeks) | MA
(years) | Indication | FF
(%) | Comprehensive
prenatal cfDNA
screening result | Diagnostic testing and pregnancy outcome | |---------|---------------|---------------|---|-----------|---|---| | P38 | 21.1 | 38 | NT 8.9 mm, bilateral clubfoot, ventricular septal defect | 9.2 | T21 | amniocentesis; karyotype; elective abortion | | P39 | 12.6 | 40 | NT 4.3 mm | 21.8 | T21 | amniocentesis; karyotype | | P40 | 17.1 | 34 | NT 4.8 mm | 16.4 | T21 | amniocentesis; CMA and karyotype; elective abortion | | P41 | 19.3 | 35 | NT 4.2 mm | 16.2 | T21 | amniocentesis; CMA and karyotype; elective abortion | | P42 | 20.0 | 40 | heart malformation | 11.9 | T21 | product of conception; CNV-seq; elective abortion | | P43 | 20.0 | 34 | atrioventricular septal defect,
pulmonary stenosis, nasal
bone dysplasia | 13.0 | T21 | product of conception; CNV-seq; elective abortion | | P44 | 18.1 | 20 | fetal choroidal cyst, nasal
bone absent | 17.1 | T21 | amniocentesis; CNV-seq, and CMA; elective abortion | | P45 | 17.3 | 28 | unclear nasal bone | 10.0 | T21 | amniocentesis; CMA; elective abortion | | P46 | 18.1 | 31 | NT 3.9 mm | 8.7 | T21 | amniocentesis; CMA | | P47 | 17.0 | 34 | NT 7.1 mm, nasal bone
absent, ventricular septal
defect | 5.7 | T21 | amniocentesis; CNV-seq and CMA; elective abortion | | P48 | 18.0 | 24 | NT 3.7 mm | 6.4 | T21 | amniocentesis; CNV-seq, CMA, and karyotype | | P49 | 19.0 | 33 | bright spots on the left ventricle | 9.7 | T21 | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P50 | 18.0 | 32 | NT 3.6 mm | 11.6 | T21 | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P51 | 18.3 | 36 | fetal hydrops, NT 5.8 mm | 13.8 | T21 | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P52 | 18.3 | 38 | bilateral choroidal cyst, nasal
bone absent | 11.4 | T21 | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P53 | 16.0 | 26 | NF 6.0 mm, unclear nasal bone, cystic hygroma | 10.8 | T21 | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P54 | 17.3 | 28 | NF 6.9 mm, fetal edema | 15.5 | T21 | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P55 | 17.0 | 38 | NT 4.4 mm | 9.5 | T21 | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P56 | 29.3 | 31 | multiple malformations | 17.9 | T21 | amniocentesis; CNV-seq; elective abortion | | P57 | 17.0 | 35 | NT 3.4 mm | 23.9 | T21 | amniocentesis; CNV-seq; elective abortion | | P58 | 31.0 | 37 | right ventricular hypertrophy,
right ventricular wall
thickening, pericardial
effusion | 11.5 | T21 | amniocentesis; CNV-seq | | P59 | 35.0 | 33 | short femur and humerus | 13.6 | T21 | amniocentesis; CNV-seq | | P60 | 16.0 | 31 | NT 3.8 mm, cystic hygroma, fetal hydrops | 12.5 | T21 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P61 | 17.1 | 30 | cystic hygroma | 13.4 | T21 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P62 | 17.9 | 33 | NT 3.4 mm, reversed a-wave in ductus venosus | 7.1 | T21 | amniocentesis; CNV-seq, and
karyotype; elective abortion | | P63 | 18.3 | 42 | bilateral choroidal cyst | 8.1 | T21 | amniocentesis; CNV-seq, and
karyotype; elective abortion | | P64 | 17.6 | 35 | nasal bone dysplasia, bilateral
lateral ventriculomegaly | 8.6 | T21 | amniocentesis; CNV-seq, and
karyotype; elective abortion | | P65 | 17.7 | 32 | NT 3.6 mm | 10.7 | T21 |
amniocentesis; CNV-seq, and karyotype; elective abortion | | P66 | 13.1 | 27 | NT 4.0 mm, cystic hygroma | 11.1 | T18 | amniocentesis; CMA and karyotype; elective abortion | | P67 | 12.0 | 24 | cranial malformations,
omphalocele, radial dysplasia | 3.1 | T18 | product of conception; CNV-seq; elective abortion | | P68 | 21.6 | 28 | open spina bifida, cardiac
defects | 8.4 | T18 | product of conception; CNV-seq; elective abortion | | P69 | 18.4 | 39 | fetal hydrops | 10.3 | T18 | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P70 | 14.4 | 25 | fetal hydrops, increased NT | 8.0 | T18 | amniocentesis; CNV-seq; elective abortion | | P71 | 13.8 | 25 | NT 5.1, radial longitudinal deficiency, cardiac defects | 7.5 | T18 | amniocentesis; CNV-seq; elective abortion | | | | | • | | | | # $\textbf{Extended Data Table 4 (continued)} \ | \ \textbf{Summary of fetuses affected by chromosomal conditions identified by comprehensive prenatal cfDNA screening and confirmed by diagnostic testing}$ | Subject | GA
(weeks) | MA
(years) | Indication | FF
(%) | Comprehensive
prenatal cfDNA
screening result | Diagnostic testing and pregnancy outcome | |---------|---------------|---------------|--|-----------|---|---| | P72 | 19.8 | 38 | NT 4.7 mm, multiple malformations | 15.1 | T18 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P73 | 16.4 | 30 | NT 3.4 mm, reversed a-wave in ductus venosus, ventricular septal defect | 8.7 | T18 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P74 | 17.1 | 32 | NT 3.5 mm | 8.8 | T18 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P75 | 12.7 | 37 | cardiac defects | 10.7 | T18 | amniocentesis; WES, CNV-seq, and karyotype; elective abortion | | P76 | 21.4 | 31 | multiple malformations | 7.4 | T13 | product of conception; CNV-seq; elective abortion | | P77 | 13.0 | 26 | multiple malformations, fetal
hydrops, brain and heart
abnormalities, increased NT | 9.4 | T13 | amniocentesis; CNV-seq, and CMA; elective abortion | | P78 | 17.0 | 28 | NT 6.9 mm | 8.0 | T13 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P79 | 14.0 | 31 | forebrain malformation | 4.4 | T13 | amniocentesis; WES; elective abortion | | P80 | 12.1 | 29 | cystic hygroma | 8.6 | 45X | amniocentesis; CNV-seq | | P81 | 12.7 | 28 | fetal hydrops, cystic hygroma | 7.0 | 45X | amniocentesis; CNV-seq and
karyotype; elective abortion | | P82 | 15.1 | 33 | fetal hydrops | 5.3 | 45X | chorionic villus; CNV-seq and
karyotype; elective abortion | | P83 | 15.3 | 36 | bilateral pleural effusion, fetal hydrops, cystic hygroma | 8.2 | 45X | product of conception; CNV-seq; elective abortion | | P84 | 13.0 | 26 | subcutaneous soft tissue thickening, cystic hygroma | 11.6 | 45X | amniocentesis; CNV-seq, and CMA; elective abortion | | P85 | 13.9 | 40 | cystic hygroma | 15.1 | 45X | amniocentesis; CNV-seq, and CMA; elective abortion | | P86 | 14.7 | 29 | bilateral pleural effusion, fetal
hydrops, NT 7.2mm | 7.5 | 45X | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P87 | 18.0 | 34 | left temporal cyst, bilateral
choroidal cyst | 7.1 | 45X | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P88 | 13.0 | 24 | NT 8.2 mm, cystic hygroma | 5.2 | 45X | amniocentesis; CNV-seq, CMA, and karyotype; | | P89 | 24.6 | 29 | NT 7.9 mm, reversed a-wave in ductus venosus, bilateral pleural effusion | 6.9 | 45X | amniocentesis; CNV-seq, and karyotype; elective abortion | | P90 | 17.7 | 28 | cystic hygroma | 11.7 | 45X | amniocentesis; CNV-seq, and
karyotype; elective abortion | | P91 | 33.3 | 27 | spinal abnormalities, short femur | 32.2 | 45X | amniocentesis; CNV-seq, and CMA; elective abortion | | P92 | 18.7 | 32 | NT 5.4 mm | 12.1 | 47XYY | amniocentesis; CMA and
karyotype | | P93 | 22.4 | 26 | cardiac defects | 8.9 | 22q11.2del | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P94 | 25.0 | 27 | double outlet right ventricle,
ventricular septal defect | 16.4 | 22q11.2del | amniocentesis; CNV-seq | | P95 | 25.0 | 29 | ventricular septal defect,
bilateral renal pelvis
separation | 7.3 | 22q11.2del | amniocentesis; CNV-seq, and karyotype; elective abortion | | P96 | 26.3 | 37 | suspected tetralogy of Fallot | 12.4 | 22q11.2del | amniocentesis; CNV-seq, and karyotype; elective abortion | | P97 | 17.4 | 30 | multiple malformations | 7.8 | 4p16del | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | P98 | 16.0 | 30 | NT3.8 mm | 6.4 | 4p16del | amniocentesis; CNV-seq, and karyotype; elective abortion | | P99 | 19.7 | 42 | standard prenatal cfDNA screening high risk | 16.9 | T21 | amniocentesis; CNV-seq; elective abortion | | P100 | 18.6 | 35 | standard prenatal cfDNA screening high risk | 9.2 | T21 | amniocentesis; CNV-seq; elective abortion | | P101 | 18.0 | 27 | standard prenatal cfDNA screening high risk | 11.1 | T21 | amniocentesis; CNV-seq, and CMA; elective abortion | | P102 | 18.9 | 37 | standard prenatal cfDNA
screening high risk | 8.0 | T21 | amniocentesis; CNV-seq, and CMA; elective abortion | | P103 | 18.3 | 41 | standard prenatal cfDNA
screening high risk | 11.4 | T21 | amniocentesis; CNV-seq, CMA, and karyotype; elective abortion | | | | | 0 0 | | | , ,, , | # Extended Data Table 4 (continued) | Summary of fetuses affected by chromosomal conditions identified by comprehensive prenatal cfDNA screening and confirmed by diagnostic testing | Subject | GA
(weeks) | MA
(years) | Indication | FF
(%) | Comprehensive
prenatal cfDNA
screening result | Diagnostic testing and pregnancy outcome | |---------|---------------|---------------|--|-----------|---|--| | P104 | 22.0 | 36 | standard prenatal cfDNA screening high risk | 14.8 | T21 | amniocentesis; CNV-seq; elective abortion | | P105 | 19.0 | 40 | standard prenatal cfDNA screening high risk | 4.7 | T21 | amniocentesis; CNV-seq; elective abortion | | P106 | 17.3 | 39 | standard prenatal cfDNA
screening high risk | 17.0 | T21 | amniocentesis; CNV-seq | | P107 | 19.1 | 33 | standard prenatal cfDNA
screening high risk | 18.2 | T21 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P108 | 19.3 | 21 | standard prenatal cfDNA
screening high risk | 12.3 | T21 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P109 | 18.0 | 36 | standard prenatal cfDNA
screening high risk | 6.7 | T21 | amniocentesis; CNV-seq, and karyotype | | P110 | 16.4 | 36 | standard prenatal cfDNA
screening high risk | 11.9 | T21 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P111 | 19.6 | 43 | standard prenatal cfDNA screening high risk | 8.8 | T21 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P112 | 23.8 | 23 | standard prenatal cfDNA screening high risk | 14.1 | T21 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P113 | 17.4 | 31 | standard prenatal cfDNA screening high risk | 7.8 | T21 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P114 | 18.6 | 44 | standard prenatal cfDNA screening high risk | 11.2 | T18 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P115 | 20.6 | 28 | standard prenatal cfDNA screening high risk | 8.6 | T18 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P116 | 18.3 | 35 | standard prenatal cfDNA screening high risk | 16.0 | T13 | amniocentesis; CNV-seq, and karyotype; elective abortion | | P117 | 17.6 | 30 | standard prenatal cfDNA screening high risk | 3.3 | 45X | amniocentesis; CNV-seq, and karyotype; elective abortion | | P118 | 22.4 | 28 | standard prenatal cfDNA
screening high risk | 8.2 | 45X | amniocentesis; CNV-seq | | P119 | 19.0 | 29 | standard prenatal cfDNA screening high risk | 10.5 | 45X | amniocentesis; CNV-seq; elective abortion | | P120 | 17.4 | 29 | standard prenatal cfDNA
screening high risk | 7.2 | 47XXX | amniocentesis; CNV-seq, and karyotype; elective abortion | | P121 | 19.1 | 20 | standard prenatal cfDNA screening high risk | 8.2 | 47XXX | amniocentesis; CNV-seq; livebor | | P122 | 17.7 | 29 | standard prenatal cfDNA
screening high risk | 8.9 | 47XXX | amniocentesis; CNV-seq, and karyotype; elective abortion | | P123 | 19.9 | 40 | standard prenatal cfDNA
screening high risk | 13.5 | 47XXX | amniocentesis; CNV-seq, and karyotype; liveborn | | P124 | 17.4 | 31 | standard prenatal cfDNA
screening high risk | 7.7 | 47XXX | amniocentesis; CNV-seq, and karyotype; liveborn | | P125 | 17.3 | 28 | standard prenatal cfDNA
screening high risk | 12.6 | 47XXX | amniocentesis; CNV-seq, and karyotype; liveborn | | P126 | 19.6 | 32 | standard prenatal cfDNA
screening high risk | 12.0 | 47XXY | amniocentesis; CNV-seq, and karyotype; elective abortion | | P127 | 18.6 | 38 | standard prenatal cfDNA screening high risk | 14.1 | 47XXY | amniocentesis; CNV-seq, and karyotype; elective abortion | | P128 | 18.6 | 38 | standard prenatal cfDNA
screening high risk | 13.9 | 47XYY | amniocentesis; CNV-seq; livebor | | P129 | 17.9 | 29 | standard prenatal cfDNA screening high risk | 9.1 | 47XYY | amniocentesis; CNV-seq, and karyotype; liveborn | | P130 | 18.0 | 29 | standard prenatal cfDNA
screening high risk | 7.3 | 47XYY | amniocentesis; CNV-seq, and karyotype | | P131 | 16.1 | 41 | standard prenatal cfDNA screening high risk | 11.4 | 22q11.2del | amniocentesis; CNV-seq | | P132 | 17.0 | 31 | standard prenatal cfDNA screening high risk | 10.5 | 22q11.2del | amniocentesis; CNV-seq, and karyotype; elective abortion | | P133 | 18.4 | 27 | standard prenatal cfDNA screening high risk | 16.8 | 4p16del | amniocentesis; CNV-seq;
elective abortion | | P134 | 18.9 | 27 | maternal serum screening high risk | 17.6 | T21 | amniocentesis; CNV-seq, and karyotype | | P135 | 17.0 | 40 | maternal serum screening
high risk | 5.0 | 47XYY | amniocentesis; CNV-seq, and karyotype; liveborn | GA: gestational age. MA: maternal age. FF: fetal fraction. CNV-seq: next-generation sequencing based chromosomal copy-number variation analysis. CMA: chromosomal microarray analysis. NT: nuchal translucency. NF: Nuchal fold. ## Extended Data Table 5 | Cases with false screening results | Subject | GA
(weeks) | MA
(years) | Indication | FF (%) | Standard
prenatal cfDNA
screening | Comprehensive
prenatal cfDNA
screening | Diagnostic testing results and pregnancy outcome | |---------|---------------|---------------|--|--------|---|--|---| | F1 | 23.0 | 32 | standard prenatal cfDNA screening high risk | 12.3 | T13 | T13 | amniocentesis; negative on CNV-seq, CMA, and karyotype | | F2 | 16.0 | 39 | standard prenatal cfDNA screening high risk | 12.6 | T13 | T13 | amniocentesis; negative on CNV-seq | | F3 | 22.6 | 26 | standard prenatal cfDNA screening high risk | 12.3 | T13 | T13 | amniocentesis; negative on CNV-seq, and karyotype | | F4 | 16.6 | 33 | standard prenatal cfDNA screening high risk | 8.6 | T13 | T13 | amniocentesis; negative on CNV-seq, and karyotype; liveborn | | F5 | 17.0 | 30 | maternal serum
screening and standard
prenatal cfDNA screening
high risk | 12.8 | 45X | 45X | amniocentesis; negative on CNV-seq, CMA, and karyotype; liveborn | | F6 | 27.6 | 29 | standard prenatal cfDNA screening high risk | 10.7 | 45X | 45X | amniocentesis; negative on CNV-seq, CMA, and karyotype; liveborn | | F7 | 17.1 | 32 | clinical history suggestive
of genetic conditions and
increased nuchal
translucency | 10.3 | Low risk | Low risk | amniocentesis; T21 on CNV-seq and karyotype; spontaneous abortion | | F8 | 27.0 | 28 | cardiac defects | 17.9 | Low risk | Low risk | product of conception; T21 on CNV-
seq; elective abortion | GA: gestation age. MA: maternal age. FF: fetal fraction. CNV-seq: next-generation sequencing based chromosomal copy-number variation analysis. CMA: chromosomal microarray analysis. T21: trisomy 21. | Subject | Gestation | Maternal | Indication | FF | Comprehensive | | | iagnostic testing | | • | Specimen type | Pregnancy outcome | |--------------|--------------|-----------|---|--------------|----------------------|------------------|------------------|-------------------|------------------|--------|--|--| | Gubject | age (wks) | age (yrs) | indication | (%) | prenatal
cfDNA | CMA | Karyotyping | CNV-seq | NGS-SGD | WES | оресниен туре | r regnancy outcome | | | | | | | screening
result | | | | | | | | | N1
N2 | 22.6
17.0 | 29 | Multicystic kidney dysplasia
NT 3.6 mm | 16.9
11.5 | Low risk | - | Normal
Normal | Normal | Normal | - | Amniocytes
Amniocytes | Liveborn - | | N3
N4 | 22.6
23.1 | | Bilateral renal pelvis separation, bright spots on the ventricle
NF 6.4 mm, dilated left renal pelvis, short femur | 7.1
8.2 | Low risk
Low risk | • | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N5
N6 | 22.9
17.7 | 29 | Suspected hand polydactyly, abnormality of the 2nd toe
NT 3.8 mm | 11.0 | Low risk
Low risk | - | Normal
Normal | | - | - | Product of conception
Amniocytes | - | | N7
N8 | 27.0 | 26 | Pulmonary stenosis
Right multicystic kidney dysplasia | 16.0 | Low risk
Low risk | - | Normal
Normal | -
Normal | Normal | - | Product of conception
Amniocytes | -
Liveborn | | N9 | 13.6 | 31 | Right multicystic kidney dysplasia | 11.8 | Low risk | Normal | - INOITIAI | - INOITIAI | - Inollilai | - | Amniocytes | Elective abortion | | N10
N11 | 25.7
17.4 | 35 | Pulmonary stenosis
NT 4.1 mm | 12.1 | Low risk
Low risk | Normal
Normal | Normal | - | - | - | Product of conception
Amniocytes | Liveborn
Liveborn | | N12
N13 | 25.1
18.1 | | Cardiac defects, bilateral mild hydronephrosis
NT 4.9 mm, tricuspid regurgitation | 6.7
10.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | - | - | - | Product of conception
Amniocytes | Elective abortion
Elective abortion | | N14
N15 | 26.1
24.0 | | Cardiac defects Right ear malformation | 22.5
12.3 | Low risk
Low risk | Normal
Normal | Normal
Normal | - | - | - | Product of conception
Product of conception | Elective abortion
Elective abortion | | N16
N17 | 21.1
18.0 | 26 | Multiple abnormalities, bilateral lateral ventriculomegaly Cystic hygroma | 14.1
7.4 | Low risk
Low risk | Normal
Normal | Normal
Normal | - | - | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N18
N19 | 28.0
17.0 | 31 | Cardiac defects Left choroidal cyst | 16.8
17.1 | Low risk
Low risk | Normal
Normal | Normal
Normal | - | - | - | Product of conception
Amniocytes | Liveborn
Liveborn | | N20
N21 | 22.0 | 29 | Bilateral choroidal cyst | 13.6 | Low risk | Normal | Normal | | - | | Product of conception | Elective abortion | | N22 | 29.0
18.0 | 39 | Brain dysplasia
NT 3.7 mm | 11.4 | Low risk
Low risk | Normal
Normal | Normal
Normal | | - | - | Product of conception
Amniocytes | Liveborn | | N23
N24 | 19.6
25.0 | 32 | Venous catheter absent
Bilateral talipes valgus, big toe abnormality | 8.1
12.7 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal | - | - | Amniocytes
Amniocytes | Liveborn | | N25
N26 | 30.0
16.0 | 31 | Cardiac and bipedal sonograms changed
NT 4.7 mm | 16.5
16.5 | Low risk
Low risk | - | | Normal
Normal | - | - | Product of conception
Amniocytes | Elective abortion
Liveborn | | N27
N28 | 22.6
25.3 | | NF 6.1 mm, left kidney dysplasia, spinal abnormalities Hydronephrosis, posterior urethral valve | 14.8
11.6 | | -
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Elective abortion | | N29
N30 | 24.0
26.0 | 32 | Spina bifida, meningocele
Small left heart, coarctation of the ascending aortic arch | 3.5
14.4 | Low risk
Low risk | - | - | Normal
Normal | - | - | Product of conception
Product of conception | Elective abortion | | N31
N32 | 23.9 | 34 | Suspected dubfoot | 9.5 | Low risk | - | - | Normal | - | - | Amniocytes | Liveborn
Elective abortion | | N33 | 22.4
24.6 | 30 | Ventricular septal defect
Bilatera pleural effusion, fetal hydrops | 7.1 | Low risk
Low risk | - | - | Normal
Normal | - | - | Product of conception
Product of conception | - | | N34
N35 | 17.9
26.6 | 32 | Increased NT, osteogenesis dysplasia
Renal agenesis | 8.7
15.2 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N36
N37 | 29.1
24.9 | | Dilated bilateral renal pelvis Echogenic bowel, nasal bone absent | 16.1
6.7 | Low risk
Low risk | Normal
- | Normal | Normal
Normal | Normal | - | Amniocytes
Product of conception | Liveborn | | N38
N39 | 22.9
26.3 | 33 | Short nasal bone
Ectopic kidney | 8.9
11.6 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal | - | Product of conception
Amniocytes | Liveborn | | N40
N41 | 25.7
20.6 | | Bilateral lateral ventriculomegaly, unclear nasal bone
Right clubfoot, bilateral choroidal cyst | 15.9
5.9 | Low risk
Low risk | | Normal
Normal | Normal
Normal | - | - | Product of conception
Amniocytes | Livebom
Livebom | | N42 | 24.3 | 33 | Cardiac defects, decreased middle cerebral artery pulsatility index | 6.6 | Low risk | - | Normal | Normal | - | - | Product of conception | Liveborn | | N43
N44 | 24.4
13.7 | 30 | Cardiovascular system abnormality, stomach bubble absent
Cystic hygroma | 14.1
8.8 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | - | - | Product of conception
Amniocytes | Elective abortion
Liveborn | | N45
N46 | 32.6
23.6 | 34 | Right hydronephrosis Complete transposition of the great arteries | 20.3
9.7 | Low risk
Low risk | Normal
- | Normal
Normal | Normal
Normal | Normal | - | Amniocytes
Product of conception | Liveborn
Elective abortion | | N47
N48 | 32.0
24.9 | | Duplicated kidney, dilated of the ureter Ventricular septal defect, renal sinus separation | 25.2
9.9 | Low risk
Low risk | Normal
- | Normal
Normal | Normal
Normal | Normal - | - | Amniocytes
Product of conception | Liveborn
Liveborn | | N49
N50 | 24.3
12.9 | | Ventricular septal defect
NT 3.2 mm | 12.3
8.6 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | - | - | Product of conception
Amniocytes | Liveborn
Liveborn | | N51
N52 | 23.3 | 32 | NF 7.6 mm
Small fetus, bowel enlarged | 8.6
14.7 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | - | - | Amniocytes Product of conception | Liveborn
Elective abortion | | N53 | 27.3 | 26 | Bilateral lateral ventriculomegaly, hydrocephalus | 14.5 | Low risk | - | Normal | Normal | | - | Product of conception | Elective abortion | | N54
N55 | 22.4
25.9 | 30 | Left lateral ventriculomegaly Left kidney absent | 14.5
10.7 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal | - | Product of
conception
Amniocytes | Livebom
Livebom | | N56
N57 | 23.1
12.6 | 30 | NF 6.5 mm
NT 6.8 mm | 6.3
10.1 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | - | - | Amniocytes
Amniocytes | Elective abortion | | N58
N59 | 13.4
13.4 | | NT 3.8 mm
NT 5.4 mm | 11.9 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | - | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N60
N61 | 12.7
23.0 | | Cystic hygroma Left choroidal cyst | 8.7
10.0 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | - | - | Amniocytes
Product of conception | Liveborn
Liveborn | | N62
N63 | 29.3
18.0 | 31 | Multiple abnormalities
Ventricular septal defect | 17.8
14.8 | Low risk
Low risk | | Normal
Normal | Normal
Normal | - | - | Product of conception
Amniocytes | Liveborn | | N64
N65 | 24.4 | 33 | Right lateral ventriculomegaly, coronary sinus enlargement Clubfoot | 10.3 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | - | - | Product of conception | Liveborn
Liveborn | | N66 | 24.7 | 26 | Cardiovascular system abnormality | 11.6 | Low risk | - | Normal | Normal | | - | Product of conception | Liveborn | | N67
N68 | 26.4
18.0 | 35 | Left duplicated kidney, ureter abnormalities
Bright spots on the left ventricle | 14.9
8.2 | Low risk | Normal | Normal
Normal | Normal
Normal | Normal | - | Product of conception
Amniocytes | Livebom
Livebom | | N69
N70 | 16.4
24.7 | 26 | NT 3.2 mm
Bright spots on the left ventricle, vagus right subclavian artery | 7.4
10.4 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N71
N72 | 14.7
23.7 | | Anencephaly
Clubfoot, bilateral finger overlap, short mandible, scalp edema | 15.3
5.5 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Product of conception
Product of conception | Elective abortion Elective abortion | | N73
N74 | 23.0
13.6 | | Complex cardiac dysplasia, left cardiac dysplasia Omphalocele, cardiac defects, tetralogy of Fallot | 7.6
11.0 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Product of conception
Product of conception | Elective abortion
Elective abortion | | N75
N76 | 27.3
22.6 | 20 | Dilated bilateral renal pelvis, polyhydramnios
NF 6.8 mm | 21.1
10.8 | Low risk
Low risk | - | Normal | Normal
Normal | Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N77
N78 | 27.4 | 31 | NF 6.8 mm
Spina abnormalities with Arnold-Chiari malformation | 14.7 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes Product of conception | Liveborn
Elective abortion | | N79 | 17.3 | 33 | Spiria automaines with Amore-Chian maiormation NT 3.6 mm Dilated left renal pelvis | 10.4 | Low risk | - | | Normal | Normal | - | Amniocytes | Liveborn | | N80
N81 | 23.3
22.6 | | Dilated left renal pelvis
Lumbar hemivertebrae | 6.6
11.5 | Low risk
Low risk | | Normal | Normal
Normal | Normal | - | Product of conception
Amniocytes | Elective abortion
Elective abortion | | N82
N83 | 23.0
31.0 | 34
32 | Dilated bilateral renal pelvis
Short long bones | 16.8
20.5 | Low risk
Low risk | - | Normal - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn - | | N84
N85 | 12.3
14.0 | | Cystic hygroma, fetal hydrops, nasal bone absent
Skull aura absent | 6.4
8.4 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Product of conception
Amniocytes | Elective abortion
Elective abortion | | N86
N87 | 26.4
24.4 | | Right ventricle dysplasia, tricuspid stenosis
Left renal agenesis | 10.6 | Low risk
Low risk | - | Normal | Normal
Normal | Normal
Normal | Normal | Product of conception
Amniocytes | Elective abortion
Liveborn | | N88
N89 | 15.9 | 22 | Hydrocephalus Multiple abnormalities | 21.6 | | - | - | Normal
Normal | Normal
Normal | - | Product of conception Product of conception | Elective abortion Elective abortion | | N90
N91 | 27.0 | 30 | womple automatices Brain neoplasm Hydrocephalus | 18.4 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Product of conception Product of conception | Elective abortion Elective abortion | | N92 | 23.6 | 28 | Cleft lip and palate | 8.1 | Low risk | - | - | Normal | Normal | - | Amniocytes | - | | N93
N94 | 25.1
20.1 | 28 | Hydronephrosis, finger and toe malformations
Bilateral choroidal cyst, bright spots on the left ventricle | 13.4
12.2 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N95
N96 | 25.3
24.0 | 29 | Cardiac defects, overriding aorta, pulmonic stenosis
Left heart hypoplasia, tricuspid valve abnormalities | 13.7
13.2 | Low risk
Low risk | | | Normal
Normal | Normal
Normal | L | Product of conception
Product of conception | Elective abortion
Elective abortion | | N97
N98 | 17.0
32.7 | | Skull absent, multiple abnormalities Bright spots on the right liver | 7.2 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Product of conception
Amniocytes | Elective abortion
Liveborn | | N99
N100 | 22.4
25.0 | | Cystic hygroma
Spinal abnormalities | 8.3 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Product of conception
Product of conception | Elective abortion
Elective abortion | | N101
N102 | 30.9
13.1 | 25 | Cardiac defects, fetal hydrops Multiple malformations | 27.9 | | - | - | Normal
Normal | Normal
Normal | - | Product of conception Product of conception | Elective abortion Elective abortion | | N103 | 12.7 | 33 | Multiple mailormations Fetal hydrops Curved bilateral femur | 8.5 | Low risk | | - | Normal | Normal | | Amniocytes Product of conception | Elective abortion | | N104
N105 | 19.3
21.3 | 45 | Cardiac defects, skeletal dysplasia, spinal abnormalities | 7.3 | Low risk | - | | Normal
Normal | Normal
Normal | - | Product of conception | Elective abortion Elective abortion | | N106
N107 | 23.4
19.1 | 26 | Multiple abnormalities, dysgenesis of the corpus callosum
Ventricular septal defect, left radius absent, single umbilical artery | 17.4
8.5 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | - | Product of conception
Product of conception | Elective abortion Elective abortion | | N108
N109 | 30.6
30.1 | | Short long bones
Growth restriction, abnormal skull morphology | 15.4
19.4 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Product of conception | Liveborn
Elective abortion | | N110
N111 | 23.0
23.4 | 26 | Left dilated renal pelvis, dilated renal calices Congenital cardiopathy | 12.7
13.0 | Low risk | - | Normal | Normal
Normal | Normal
Normal | - | Amniocytes Product of conception | Liveborn
Elective abortion | | N112
N113 | 19.9 | 25 | Spinal abnormalities, cerebellar dysplasia, clubfoot
Kidney dysplasia, ureterocele, bright spots on the left ventricle | 7.6 | | - | Normal | Normal
Normal | Normal
Normal | Normal | Product of conception
Amniocytes | Elective abortion
Liveborn | | N114 | 25.0 | 28 | Multiple malformations | 11.7 | Low risk | - | - | Normal | Normal | Hollid | Product of conception | Elective abortion | | N115
N116 | 23.7 | 32 | Left hand abnormalities Growth restriction | 6.5 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Product of conception
Product of conception | Elective abortion | | N117
N118 | 30.3
28.0 | 27 | Echogenic bowel
Kidney dysplasia | 8.9
6.0 | Low risk
Low risk | | Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N119
N120 | 29.4
29.1 | 33 | Multiple abnormalities
Ventricular septal defect | 14.5
19.7 | Low risk | | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | | | N121
N122 | 31.0
12.7 | 25 | Bilateral lateral ventriculomegaly
Limbs abnormalities | 24.2
10.3 | Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Product of conception | Elective abortion | | | | | | _ | | | | | | | | | | Subject | Gestation | Maternal | Indication | FF | Comprehensive | | D | lagnostic testing | | | Specimen type | Pregnancy outcome | |----------------------|----------------------|-----------|---|---------------------|--------------------------------|------------------|------------------|-------------------|------------------|--------|-------------------------------------|--| | Subject | age (wks) | age (yrs) | indication | (%) | prenatal
cfDNA
screening | CMA | Karyotyping | CNV-seq | NGS-SGD | WES | оресппен туре | r regnancy outcome | | N123 | 34.3 | 27 | Small fetus | 21.0 | result
Low risk | | | Normal | Normal | - | Amniocytes | Liveborn | | N124
N125 | 26.4
33.0 | 28 | Small cerebellum, left kidney dysplasia Left choroidal cyst | 15.8
27.6 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N126
N127 | 27.0 | 35 | Crowth restriction, posterior fossa cyst, cerebellar vermis hypoplasia Ventricular septal defect, polyhydramnios | 15.4
16.6 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Product of conception
Amniocytes | Encon | | N128
N129 | 33.3
22.0 | 27 | Venceased head circumference Dilated bilateral renal pelvis, single umbilical artery | 23.2 | Low risk
Low risk | - | Normal
| Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N130
N131 | 25.1
24.0 | 33 | Dijater orjateral retrai pervis, single unbijical artery Ventricular septal defect Spinal abnormalities | 12.5 | Low risk
Low risk | - | Normal | Normal
Normal | Normal
Normal | - | Amniocytes Product of conception | Liveborn
Elective abortion | | N132 | 30.6 | 28 | Right hydronephrosis | 15.9 | Low risk | | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N133
N134 | 31.7
29.9 | 36 | Small fetus
Small fetus | 20.8 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn - | | N135
N136 | 30.9
21.4 | 29 | Ventricular septal defect
Left hydronephrosis | 7.5 | Low risk
Low risk | - | Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N137
N138 | 30.0
25.7 | 32 | Intracranial morphology abnormalities Bilateral lateral ventriculomegaly | 28.1
10.8 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N139
N140 | 16.1
32.4 | 28 | NT 4.6 mm
Suspected arachnoid cyst | 10.8
33.7 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | - | Amniocytes Product of conception | Liveborn
Elective abortion | | N141
N142 | 30.0
23.4 | 34 | Small fetus
NF 6.2 mm, dilated bilateral renal pelvis, atrial septal aneurysm | 10.6
15.4 | Low risk
Low risk | - | Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N143
N144 | 30.4
32.3 | 27 | Polyhydramnios
Cystic hygroma | 21.1
14.4 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn - | | N145
N146 | 23.9
29.0 | 21 | Right pelvict kidney Short long bones | 11.4
21.9 | Low risk | | Normal | Normal
Normal | Normal | - | Product of conception
Amniocytes | Liveborn | | N147
N148 | 17.4
27.9 | 30 | NT 4.0 mm
NT 3.6 mm | 8.2
14.8 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N149
N150 | 14.1
30.0 | 34 | Gastroschisis and visceral ectropion Right pleural effusion | 9.4
17.8 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Product of conception
Amniocytes | Elective abortion | | N151
N152 | 27.9
22.6 | 31 | Single umbilical artery Aberrant right subclavian artery | 17.3
6.4 | Low risk
Low risk | | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N153
N154 | 17.7
27.6 | 32 | Multiple abnormalities External genitalia abnormalities | 13.1 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Product of conception
Amniocytes | Elective abortion
Liveborn | | N155
N156 | 27.6
25.6 | 28
35 | Hyperechogenic kidneys, increased of cardiothoracic area ratio
Left lower leg abnormalities | 14.5
19.5 | Low risk
Low risk | 0 0 | Normal
Normal | Normal
Normal | Normal
Normal | Normal | Amniocytes
Amniocytes | -
Liveborn | | N157
N158 | 26.3
30.4 | 25
31 | Ventricular septal defect
Microcephaly | 15.8
24.6 | Low risk | Normal | Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N159
N160 | 19.6
21.3 | 20
26 | Fetal hydrops, left pleural effusion, ectopia cordis
Micrognathia, ventricular septal defect | 11.2
18.5 | Low risk
Low risk | Normal
Normal | 0 0 | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Elective abortion | | N161
N162 | 17.4
14.0 | 28 | NT 4.0 mm Right ventricle dysplasia, pulmonary artery atresia or severe stenosis | 10.4
14.5 | Low risk
Low risk | Normal
Normal | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N163
N164 | 22.4
16.7 | 30 | NF 6.2 mm, dilated right renal pelvis
NT 5.8 mm | 14.6
11.1 | Low risk
Low risk | Normal | Normal - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N165
N166 | 20.7
18.0 | | Renal agenesis, hand polydactyly
NT 3.9 mm | 8.1
5.7 | Low risk
Low risk | Normal
Normal | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N167
N168 | 17.9
24.6 | 27 | NT 4.2 mm, unclear nasal bone
Short femur, lateral ventriculomegaly, single umbilical artery | 8.1
10.2 | Low risk
Low risk | Normal
Normal | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N169
N170 | 23.6
13.9 | 29 | Right renal agenesis, single umbilical artery
Acrania | 9.2
16.3 | Low risk
Low risk | Normal | Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N171
N172 | 27.3
24.0 | 39 | Gastrointestinal atresia Complete transposition of the great arteries | 17.4
9.1 | | Normal
Normal | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N173
N174 | 14.0
25.7 | 28 | Lower limb malformation, vertebral bowing Bilateral lateral ventriculomegaly, facial structure abnormalities | 9.0 | Low risk
Low risk | Normal
Normal | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Elective abortion | | N175
N176 | 13.3 | 28 | Cystic hygroma Occipital neoplasm | 9.1 | Low risk
Low risk | Normal
Normal | - | Normal
Normal | Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N177
N178 | 25.0
13.0 | 24 | Coopina reopasm
Lumbosacral tumor
Multiple abnormalities | 14.3 | Low risk
Low risk | Normal
Normal | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N179
N180 | 18.3 | 28 | Cardiac defects, single atrium and single ventricle | 7.3 | Low risk
Low risk | Normal
Normal | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N181
N182 | 25.1 | 27 | Ventricular septal defect | 19.4 | Low risk
Low risk | Normal
Normal | - | Normal | Normal
Normal | - | Amniocytes | Liveborn
Liveborn | | N183
N184 | 19.7 | 36 | NT 4.0 mm, cystic hygroma
Right choroidal cyst | 5.1 | Low risk | Normal | | Normal
Normal | Normal | - | Amniocytes
Amniocytes | Liveborn | | N185 | 15.4
24.9 | 28 | Single left ventricle, coarctation of aorta
Intracranial cystic lesion | 25.8 | Low risk
Low risk | Normal
Normal | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N186
N187
N188 | 25.0
25.1 | 33 | Bilateral clubfoot
Pulmonic stenosis | 25.5
7.3
21.5 | Low risk
Low risk | Normal
Normal | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N189 | 31.0
17.9
18.7 | 31 | Pulmonary stenosis NT 3.2 mm | 5.1 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N190
N191 | 20.1 | 35 | NT 3.5 mm
NT 3.2 mm | 12.1 | | Normal
Normal | Normal | Normal
Normal | Normal
Normal | - | Amniocytes Amniocytes Amniocytes | | | N192
N193
N194 | 18.3
17.3 | 27 | NT 3.3 mm
NT 3.2 mm
NT 3.2 mm | 8.4
20.5
7.5 | Low risk | Normal | Normal | Normal
Normal | Normal
Normal | - | Amniocytes | Liveborn
Liveborn | | N195 | 16.0
17.0 | 24 | NT 4.5 mm, cystic hygroma | 9.7 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N196
N197 | 25.9
22.6 | 31 | Unclear nasal bone, aberrant right subclavian artery
Dilated left renal pelvis, bright spots on the left ventricle | 10.0
12.1 | Low risk
Low risk | Normal - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N198
N199 | 20.6
26.7 | 28 | NT 11.6 mm, unclear nasal bone
Cardiac defects | 8.2
14.1 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N200
N201 | 19.1
16.0 | 32 | NT 4.2 mm
NT 7.4 mm, bilateral clubfoot | 9.4 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn - | | N202
N203 | 26.0
17.0 | 29 | Cardiac defects, gallbladder absent, bilateral renal pelvis separation
NT 3.6 mm, right choroidal cyst | 7.7
4.6 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N204
N205 | 23.3
17.4 | 33 | Dilated left renal pelvis
NT 5.9 mm | 10.8
7.9 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N206
N207 | 17.7
23.3 | 25 | NF 7.1 mm, NT 4.2 mm
Digestive system abnormalities | 7.7 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N208
N209 | 24.1 | 32 | Hand polydactyly
Bilateral renal pelvis separation | 11.3 | | Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N210
N211 | 26.0
31.6 | 32 | Situs inversus viscerum Growth restriction | 18.5
18.5 | | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes |
Liveborn
Liveborn | | N212
N213 | 26.4
19.0 | 28 | Bilateral renal pelvis separation, bright spots on the left ventricle
Hydrocephalus, cerebellar dysplasia | 19.7
18.2 | Low risk | Normal | Normal
Normal | Normal
Normal | Normal
Normal | Normal | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N214
N215 | 17.0
24.9 | 27 | NT 4.0 mm
Cardiac defects | 15.4
14.5 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N216
N217 | 20.1
17.0 | 33 | Echogenic bowel Aortic arch | 8.3
8.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | - | | N218
N219 | 16.1
25.1 | 32 | NT 5.3 mm
Left kidney dysplasia | 7.0 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal | - | Amniocytes Product of conception | Elective abortion
Liveborn | | N220
N221 | 16.0
28.6 | 31 | NT 3.3 mm
Dilated bilateral renal pelvis | 15.5
10.9 | Low risk
Low risk | Normal
- | Normal
Normal | Normal
Normal | Normal
- | | Amniocytes
Product of conception | Liveborn
Liveborn | | N222
N223 | 24.6
18.6 | 31 | Nasal bone absent
NT 3.4 mm | 12.8
8.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N224
N225 | 24.1
17.6 | 35 | Bilateral clubfoot, left hand hanging
NT 3.2 mm | 4.8
9.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N226
N227 | 24.0
18.0 | | Oligohydramnios, increased placental thickness
NT 4.1 mm | 13.2
7.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N228
N229 | 18.6
24.0 | | Unclear nasal bone
Bilateral renal pelvis separation | 15.1
19.5 | Low risk
Low risk | Normal - | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn - | | N230
N231 | 17.1
21.4 | 31
35 | NT 3.8 mm
Cleft lip and palate, ventricular septal defect | 20.3
16.9 | Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N232
N233 | 21.1
18.3 | 35 | Hyperechogenic kidneys
NT 3.8 mm | 16.2
9.5 | | Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N234
N235 | 18.7
16.0 | | NT 3.0 mm, bilateral choroidal cyst
NT 4.1 mm | 14.9
6.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N236
N237 | 20.0
25.0 | | NT 3.2 mm, ductus venosus absent Pulmonary stenosis, tricuspid regurgitation | 5.5
6.4 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N238
N239 | 23.4 | 31 | Unilateral choroidal cyst, bilateral lateral ventriculomegaly Bright spots on the left ventricle | 8.3
9.7 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N240
N241 | 20.0 | 24 | Cystic hygroma Double bubble syndrome, duodenal atresia | 4.6
12.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N242
N243 | 18.1
25.0 | 26 | NT 3.8 mm
Micrognathia | 5.5 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N244 | 18.0 | | NT 3.0 mm, bilateral choroidal cyst | 7.9 | | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | Subject | Gestation
age (wks) | Maternal
age (yrs) | Indication | FF
(%) | Comprehensive
prenatal
cfDNA
screening
result | СМА | Karyotyping | iagnostic testing
CNV-seq | NGS-SGD | WES | Specimen type | Pregnancy outcome | |----------------------|------------------------|-----------------------|--|--------------|---|------------------|-----------------------|------------------------------|------------------|--------|--|--| | N245
N246 | 23.7 | | Dilated bilateral renal pelvis Bilateral pyelectasis, echogenic bowel | 10.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N247
N248 | 25.1
16.9 | 30 | Tetralogy of Fallot
Cystic hygroma | 19.3
15.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N249
N250 | 23.9 | 38 | Cleft lip and palate
NT 5.0 mm | 7.1 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N251
N252 | 25.0
19.0 | | Cleft lip and palate
NT 4.4 mm | 12.1
9.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N253
N254 | 19.7
25.9 | 30
38 | Lateral ventriculomegaly, left renal pelvis separation, choroidal cys
Cardiac defects | 9.4 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N255
N256 | 25.3
25.9 | 33
37 | Complete transposition of the great arteries, ventricular septal defect Fetal growth restriction | 8.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Elective abortion | | N257
N258 | 28.6 | 30 | Multiple abnormalities | 18.5 | Low risk | Normal | Normal
Normal | Normal | Normal
Normal | | Amniocytes | Liveborn | | N259 | 24.0
27.0 | 33 | Multicystic kidney dysplasia, pinna malformation Ventricular septal defect, ringlike pancreas, souble bubble sign | 13.4 | Low risk
Low risk | Normal
Normal | Normal | Normal
Normal | Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N260
N261 | 28.0
17.7 | 26
31 | Cardiac defects
NT 4.3 mm | 12.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N262
N263 | 25.0
25.4 | 24 | Bilateral lateral ventriculomegaly
Hyperechogenic left hemidiaphragm, bright spots on the left ventricle | 10.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | - | | N264
N265 | 25.0
19.6 | 34
24 | Gastrointestinal tract abnormalities Ventricular septal defect | 10.4
7.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N266
N267 | 18.4
18.1 | 32 | NT 4.3 mm, bilateral choroidal cys, bright spots on the left ventricle
Cardiac defects | 5.1
10.6 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N268
N269 | 25.0
17.0 | | Tetralogy of Fallot
NT 5.6 mm, unclear nasal bone | 10.2
7.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N270
N271 | 27.4
26.4 | 34
38 | Fetal growth restriction Duodenal obstruction | 10.6
13.6 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N272
N273 | 31.0
28.0 | 25
33 | Bilateral lateral ventriculomegaly Ear malformation | 19.2
16.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N274
N275 | 26.1
25.0 | 31
31 | Left ear malformation Right hydronephrosis, urethral obstruction | 8.0
17.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N276
N277 | 26.6
19.6 | 32 | Left ear malformation Bilateral renal agenesis | 10.8 | Low risk
Low risk | Normal
Normal | Normal - | Normal | Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N278
N279 | 25.4
28.0 | 30
27 | Pelvic ectopic kidney, multicystic kidney dysplasia
Bilateral clubfoot | 16.1
21.5 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N280
N281 | 19.3
22.3 | 34
29 | Hydronephrosis
Bilateral hydronephrosis | 11.5
16.1 | Low risk
Low risk | Normal
Normal | Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N282
N283 | 18.4 | 38 | Bilateral renal pelvis separation, choroidal cyst Suspected tetralogy of Fallot | 9.0 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Normal |
Amniocytes
Amniocytes | Liveborn | | N284
N285 | 25.9
26.9 | | Double bubble sign, duodenal atresia Cardiac defects, single umbilical artery, tetralogy of Fallot | 14.7 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N286 | 30.3 | 34 | Right kidney dysplasia, reduced renal corticomedullary differentiation | 25.2 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N287
N288 | 25.9
20.0 | 30 | Left ectopic kidney, multicystic kidney dysplasia
Unclear nasal bone | 11.1 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N289
N290 | 24.7
19.3 | 36
28 | Ventricular septal defect, coarctation of aorta
Cystic hygroma | 9.8
7.3 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N291
N292 | 33.1
28.0 | 34 | Left multicystic kidney dysplasia
Abnormal inferior vena cava | 21.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N293
N294 | 26.0
29.9 | 31
25 | Tethered cord, spina bifida
Short femur, lateral ventriculomegaly | 11.7
20.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N295
N296 | 27.3
26.7 | 33
27 | Situs inversus viscerum, ventricular septal defect, holoprosencephaly Cardiac defects, tetralogy of Fallot | 10.7
31.4 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N297
N298 | 25.7
17.6 | 35
28 | Ventricular septal defect
Bilateral lateral ventriculomegaly | 7.9
16.0 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N299
N300 | 27.6
25.0 | 30
35 | Dilated bowel Single atrium and single ventricle, pulmonic stenosis | 14.5
12.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N301
N302 | 28.3 | 36
29 | Left renal cyst
NT 5.6 mm | 16.0
11.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N303
N304 | 27.9
26.9 | 31
27 | Echogenic bowel, enlarged posterior fossa
Right lateral ventriculomegaly, bilateral choroidal cys | 16.8
19.7 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N305
N306 | 19.1 | | NT 11.0 mm, coarctation of aorta, ventricular septal defect Abnormal liver sonography, bilateral choroidal cys, fetal malformation | 19.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N307
N308 | 24.7 | 34 | Enlarged bilateral renal, multiple sinusoid Gastrointestinal tract malformation | 11.2 | Low risk
Low risk | Normal | Normal
Normal | Normal | Normal | - | Product of conception
Amniocytes | Liveborn
Liveborn | | N309
N310 | 27.4
25.1 | 37
31 | Cardiac defects, tetralogy of Fallot Right clubfoot | 26.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N311
N312 | 19.3 | 26 | NT 6.3 mm, rocker bottom foot
Bilateral clubfoot | 12.2 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N313
N314 | 20.3 | 34 | Bilateral choroidal cys, bright spots on the ventricle Diaphragmatic hernia | 15.4 | Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes | Liveborn | | N315 | 31.7
26.1 | 26 | Growth restriction | 17.4 | Low risk
Low risk | Normal | Normal | Normal | Normal | - | Amniocytes
Amniocytes | Liveborn | | N316
N317 | 25.7 | 31
37 | Left diaphragmatic hemia Double bubble sign, gastrointestinal obstruction | 13.6 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N318
N319 | 19.0
18.3 | 30 | NT 3.9 mm, echogenic bowel
Cystic hygroma, left choroidal cyst | 7.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N320
N321 | 23.1
25.7 | 27
30 | Pulmonary cystadenoma
Bilateral lateral ventriculomegaly | 11.3 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N322
N323 | 30.0
25.6 | 39
28 | Growth restriction Ventricular septal defect, portal vein dysgenesis | 20.1
12.4 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N324
N325 | 25.3
23.7 | 27
28 | Vascular tumor Gastrointestinal tract malformation | 13.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N326
N327 | 25.0
25.6 | 34
30 | Right pulmonary cystadenoma Ventricular septal defect, single umbilical artery | 10.5
12.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N328
N329 | 18.9
29.9 | 28
26 | Ectopic kidney, polycystic kidney dysplasia Echogenic bowel | 6.6
19.0 | Low risk
Low risk | Normal | Normal | Normal
Normal | Normal
Normal | - | Product of conception
Amniocytes | Liveborn | | N330
N331 | 23.7
25.0 | 29
26 | Dilated bilateral renal pelvis
Unclear nasal bone | 16.4
13.3 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N332
N333 | 26.9
23.3 | 37
28 | Tetralogy of Fallot
Vascular tumor | 7.3
17.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N334
N335 | 24.0
25.0 | 24 | Cardiac defects, left inferior vena cava, tetralogy of Fallot
Unclear nasal bone | 11.3 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N336
N337 | 26.9 | 27 | Cardiac defects, ventricular septal defect, coarctation of aorta Bilateral choroidal cvs | 14.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N338
N339 | 30.1
23.0 | 32 | Bilateral lateral ventriculomegaly Ventricular septal defect | 21.5 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N340
N341 | 25.4 | 27 | Double bubble sign, polyhydramnios | 14.8 | Low risk | Normal | Normal | Normal
Normal | Normal | - | Amniocytes | Elective abortion | | N341
N342
N343 | 23.7
32.0
24.3 | 32
25
35 | Bilateral choroidal cys Bilateral enlarged kidney Bright spots on the left ventricle, renal pelvis separation, | 26.9
9.4 | Low risk
Low risk
Low risk | Normal
Normal | Normal
-
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes
Amniocytes | Liveborn
Liveborn
Liveborn | | N344 | 23.0 | 29 | Nasal bone absent | 10.4 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N345
N346 | 28.6
26.7 | 34 | Bilateral lateral ventriculomegaly, persistent left superior vena cava
Short femur, hypospadias, cardiac defects | 19.0 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N347
N348 | 19.0
18.9 | 26 | NT 3.6 mm | 12.6
9.5 | | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N349
N350 | 19.3
24.4 | 34
25 | Bilateral choroidal cys
Bilateral lateral ventriculomegaly, hydrocephalus | 8.5
9.7 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N351
N352 | 26.0
17.1 | | Dilated bilateral renal pelvis, aberrant right subclavian artery NT 4.5 mm | 6.9
7.8 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N353
N354 | 18.7
19.4 | | NT 5.8 mm
Fetal hydrops | 12.4
5.6 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N355
N356 | 31.0
29.6 | 33 | Enlarged bilateral renal, double inferior vena cava Enlarged bilateral renal, polyhydramnios | 34.2
26.7 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N357
N358 | 18.4 | 29
35 | Cranicocrebral and vertebral abnormalities
Bilateral choroidal cvs | 9.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N359
N360 | 30.6 | | Short long bones, small fetus Bilateral lateral ventriculomegaly, echogenic bowel | 15.4 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Elective abortion
Elective abortion | | N361
N362 | 26.0
18.7 | 23
27 | Bilateral lateral ventriculomegaly, ecnogenic bowei Ventricular septal defect Increased NT | 11.1 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes | Liveborn
Liveborn | | N363 | 26.0 | 31 | Pulmonary veins abnormalities | 7.5 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes
Amniocytes | Elective abortion | | N364
N365 | 19.0
17.0 | 28
26 | Increased NT, cystic hygroma
NT 5.0 mm, cystic hygroma | 13.8
6.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N366 | 17.4 | 30 | NT 4.2 mm | 8.2 | Low risk | Normal | Normal | Normal | Normal | | Amniocytes | - | | | | | | 1 | | ı | | Diagnostic testing | | | | I | |--------------|------------------------|-----------------------|---|--------------|------------------------------------|------------------|------------------|--------------------|------------------|-----|-------------------------------------|---| | Subject | Gestation
age (wks) | Maternal
age (yrs) | Indication | FF
(%) | Comprehensive
prenatal
cfDNA | CMA | Karyotyping | CNV-seq | NGS-SGD | WES | Specimen type | Pregnancy outcome | | | | | | | screening
result | | | | | | | | | N367 | 25.1 | | Ventricular septal defect | 22.9 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N368
N369 | 26.0
31.3 | 24 | Short limbs Hypoplastic colon, bright spots on the left ventricle | 13.2
14.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N370
N371 | 26.4
27.4 | | Left clubfoot Enlarged bilateral renal, right hydronephrosis | 16.0
25.0 | Low risk
Low risk | Normal - | Normal - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn - | | N372
N373 | 13.0
27.1 | 30 | Cystic hygroma Echogenic bowel | 21.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N374
N375 | 17.3
18.1 | 30 | NT 5.9 mm
NT 4.3 mm | 6.1 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N376 | 19.1 | 27 | NT 3.8 mm | 8.4 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N377
N378 | 25.4
26.0 | 34 | External genitalia abnormalities Cardiac defects | 6.9
13.5 | Low risk
Low risk | Normal | Normal
Normal | -
Normal | Normal | - | Product of conception
Amniocytes | Liveborn | | N379
N380 | 26.3
18.1 | | Growth restriction Bilateral choroidal cys, large bladder | 17.9
9.5 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N381
N382 | 23.0
17.0 | | Ventricular septal defect, right pulmonary cystadenoma
Bilateral choroidal cys | 30.9
7.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N383
N384 | 20.0
18.6 | 30
34 | Right choroidal cys Choroidal cys | 12.6
18.7 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N385 | 18.3 | 34 | Left choroidal cyst | 7.1 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | - | | N386
N387 | 24.3
19.1 | 26 | Bilateral choroidal cys
Bilateral choroidal cys | 11.6
11.6 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Livebom
Livebom | | N388
N389 | 18.0
19.0 | 31 | Bilateral choroidal cys
Right choroidal cyst | 3.4
11.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N390
N391 | 28.0
25.1 | | Brain cyst Aplasia/hypoplasia of the corpus callosum | 9.9 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N392
N393 | 26.0
24.3 | 35
33 | Fetal hydrops, pleural effusion Low liver echo, strong intestinal echo, mild tricuspid regurgitation | 35.5
17.1 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Elective abortion | | N394 | 18.3 | 22 | NT 3.4 mm, ventricular septal defect | 6.1 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | - | | N395
N396 | 18.6
20.7 | 27 | NT 3.4 mm
Spots on the left ventricle, bilateral renal pelvis separation | 9.0 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N397
N398 | 17.0
28.0 | 32
22 | Increased echogenicity of the umbilical cord root Meconium peritonitis | 13.0
8.1 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N399
N400 | 29.7
25.0 | 22 | Fetal hydrops, pleural and celiac effusion Hyperechogenic left chest cavity | 30.1
17.7 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Product of conception
Amniocytes | Elective abortion
Liveborn | | N401
N402 | 26.4
16.3 | 40 | Gallbladder absent | 13.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes | Liveborn
Liveborn
Elective abortion | | N403 | 24.0 | 32 | Megacystis, single umbilical artery Single umbilical artery | 14.1 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes
Amniocytes | Liveborn | | N404
N405 | 21.4
25.4 | 32 | Venous catheter absent
Interrupted inferior vena cava | 7.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn
Liveborn | | N406
N407 | 25.1
30.0 | | Aortic arch with mirror image branching Right aortic arch, aberrant left subclavian artery | 15.1
30.4 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N408
N409 | 25.6
32.4 | 25 | Pulmonic stenosis Hepatomegaly | 18.7 | Low risk
Low risk | Normal | Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N410
N411 | 30.7 | 27 | External genitalia abnormalities | 20.7 | Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes | Liveborn | | N412 | 23.1 | 32 | Systemic skeletal dysplasia, short limbs, narrow chest cavity Abnormality of prenatal development | 12.0 | Low risk
Low risk | - | - | Normal | Normal | - | Amniocytes
Amniocytes | Elective abortion | | N413
N414 | 24.0
25.0 | 27 | Short long bones Cardiovascular system abnormalities | 24.6
15.0 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn - | | N415
N416 | 24.0
22.0 | | Cystic hygroma Right renal agenesis, single umbilical artery, double inferior vena cava | 19.2 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N417
N418 | 32.3
30.0 | 34 | Short long bones
Short long bones | 30.1
21.3 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N419 | 19.0 | 32 | Short long bones | 9.1 | Low risk | - | - | Normal | Normal | - | Amniocytes | Elective abortion
Liveborn | | N420
N421 | 20.1
15.7 | 31 | Posterior cranial fossa and cardiac sonographic changed
Increased NT, fetal hydrops, omphalocele, ectopia cordis | 7.6 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes Product of conception | Elective abortion | | N422
N423 | 27.0
26.3 | | Suspected tetralogy of Fallot
Right kidney dysplasia, cardiovascular system abnormality | 19.4
9.7 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Product of conception | -
Elective abortion | | N424
N425 | 28.1
30.6 | 20 | Short long bones Bilateral lateral ventriculomegaly | 13.9
37.3 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N426
N427 | 30.0
27.4 | 25 | Bilateral lateral ventriculomegaly Small cerebellum, bilateral lateral ventriculomegaly | 19.9
13.9 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Elective abortion | | N428 | 29.9 | 27 | Spinal abnormalities | 11.6 | Low risk | - | | Normal | Norma | - | Amniocytes | Liveborn | | N429
N430 | 28.1
27.6 |
36 | Multiple malformations Bilateral lateral ventriculomegaly | 13.3
22.1 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn - | | N431
N432 | 28.7
31.1 | | Bilateral lateral ventriculomegaly Ventricular septal defect | 25.5 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N433
N434 | 33.3
29.9 | | Small fetus, suspected nasolacrimal duct cyst,
Echogenic bowel | 14.9
24.2 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N435
N436 | 34.0
31.3 | 26 | Cardiac defects Small fetus | 32.3
27.9 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | - | | N437 | 32.0 | 31 | Short long bones | 16.2 | Low risk | - | | Normal | Normal | - | Amniocytes | - | | N438
N439 | 33.6
34.9 | 28 | Dilatation of the right ureter, hydronephrosis Small fetus | 17.0
31.2 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N440
N441 | 31.6
29.4 | | Abnormal inferior vena cava course Ventricular septal defect | 13.4 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N442
N443 | 20.9
24.1 | | Multiple abnormalities Ventricular septal defect | 16.3 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N444 | 31.0 | 31 | Left lateral ventriculomegaly | 33.5 | Low risk | - | - | Normal | Normal | - | Amniocytes | Liveborn | | N445
N446 | 30.6
31.9 | 33 | Right umbilical vein Double right renal artery, aberrant right subclavian artery | 16.5
27.3 | | - | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn - | | N447
N448 | 25.1
30.0 | 35 | Bilateral lateral ventriculomegaly Left lateral ventriculomegaly | 16.0
29.1 | Low risk | - | | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn | | N449
N450 | 17.6
30.0 | 27 | NT 4.0 mm
Ventricular septal defect | 6.8
25.6 | Low risk
Low risk | - | 1 | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | - | | N451
N452 | 25.0
18.6 | 35 | Cardiac defects (left coronary artery atrophy into right ventricle) Nasal bone hypoplasia | 12.2 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N453 | 19.0 | 27 | Right kidney dysplasia, ureter abnormalities, polyhydramnios | 28.3 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | - | | N454
N455 | 31.7
31.0 | 29 | Small fetus
Omphalocele, bilateral choroidal cyst | 29.0
26.0 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn
Liveborn | | N456
N457 | 29.6
27.4 | | Ventricular septal defect
Right kidney dysplasia, polyhydramnios | 16.6
28.8 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N458
N459 | 27.9
32.0 | 31 | Pelvic cyst
Ventricular septal defect | 31.7
26.3 | | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N460
N461 | 21.0 | 39 | Cyst under the tongue | 16.5
23.0 | | - | - | Normal
Normal | Normal
Normal | - | Amniocytes | Liveborn | | N462 | 30.0 | 26 | Cystic hygroma
Ventricular septal defect, arrhythmia, tricuspid regurgitation | 34.3 | Low risk | - | | Normal | Normal | | Amniocytes
Amniocytes | Liveborn | | N463
N464 | 18.4
30.1 | 35 | Clubfoot
Intracranial morphology abnormalities | 6.4
10.8 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N465
N466 | 33.0
29.0 | 23 | Small fetus Renal dysplasia, nasal bone hypoplasia | 25.5
20.5 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N467
N468 | 29.3 | 24 | Ventricular septal defect Small fetus | 29.5 | | - | - | Normal
Normal | Normal
Normal | - | Amniocytes | Liveborn | | N469 | 21.1 | 27 | NT 4.0 mm | 7.5 | Low risk | - | | Normal | Normal | | Amniocytes
Amniocytes | Liveborn | | N470
N471 | 33,4
28.3 | 29 | Ventricular septal defect
Nasal bone hypoplasia | 21.2
8.3 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | -
Liveborn | | N472
N473 | 27.0
27.6 | 38 | Bright spots on the heart
Small fetus | 20.0
14.8 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N474
N475 | 24.3 | 40 | Spinal abnormalities Small fetus | 12.2 | | - | | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Elective abortion | | N476 | 28.9 | 29 | Low-set right kidney | 15.8 | Low risk | - | | Normal | Normal | | Amniocytes | Flori 1 1 | | N477
N478 | 27.4
26.3 | 37 | Ventricular septal defect
Cardiovascular system abnormality | 22.0
18.9 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N479
N480 | 31.4
30.6 | 31 | Small fetus Enlarged posterior fossa, pericardial effusion | 20.6
18.8 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N481
N482 | 31.0
30.0 | 29 | Celiac effusion Vascular abnormalities | 20.9 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N483
N484 | 23.6 | 25 | Aberrant right subclavian artery NT 3.3 mm | 7.3 | Low risk
Low risk | - | Normal | Normal
Normal | Normal | - | Amniocytes | Liveborn | | N485 | 16.7 | 37 | NT 3.4 mm | 8.3 | Low risk | - | Normal | Normal | Normal | - | Amniocytes
Amniocytes | Liveborn | | N486
N487 | 16.4
22.7 | 31 | NT 3.1 mm
Nasal bone absent | 9.3
11.3 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N488 | 25.1 | | Short femur | 11.0 | | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | Subject | Gestation
age (wks) | Maternal
age (yrs) | Indication | FF
(%) | Comprehensive
prenatal | CMA | Karyotyping | lagnostic testin
CNV-seq | g
NGS-SGD | WES | Specimen type | Pregnancy outcome | |--------------|------------------------|-----------------------|--|--------------|---------------------------|--|---------------------------------------|-----------------------------|------------------|--------|-------------------------------------|--| | | -3- () | -3- (), | | (, | cfDNA
screening | · · · · · · | · · · · · · · · · · · · · · · · · · · | 0.11 004 | | | | | | 11100 | 24.4 | | | | result | | | | | | | | | N489
N490 | 24.1
29.4 | | Right aortic arch, aberrant left subclavian artery Cardiovascular system abnormality | 12.8
18.4 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N491
N492 | 23.1
23.6 | 33
26 | Ventricular septal defect Bright spots on the left ventricle, echogenic bowel | 8.4
16.6 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N493 | 24.7 | 30 | Headform abnormality Right kidney dysolasia | 12.8 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N494
N495 | 25.6
27.0 | | Enlarged bilateral renal, bilateral lateral ventriculomegaly | 8.2
16.7 | Low risk
Low risk | - | Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N496
N497 | 24.3
22.0 | 22
28 | Right aortic arc, aberrant left subclavian artery Dijated bijateraj renaj pejvis, hydronephrosis, ventricujar septaj defect | 21.7
8.3 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N498 | 23.9 | 30 | Small fetus, single umbilical artery | 9.6 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N499
N500 | 29.4
24.1 | 28
37 | NT 3.3 mm, bilateral lateral ventriculomegaly Cardiovascular system abnormalities, pulmonic stenosis | 27.8
14.6 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N501
N502 | 25.0
27.1 | 23
27 | Dilated left renal pelvis, hydronephrosis, multicystic kidney dysplasia Right clubfoot, left lateral ventriculomegaly | 13.5 | Low risk
Low risk | - | Normal | Normal | -
Normal | - | Product of conception
Amniocytes | Elective abortion
Liveborn | | N503 | 28.9 | 29 | Dilated left renal pelvis, hydronephrosis, nasolacrimal duct cyst Decreased biparietal diameter, short nasal bone | 24.8 | Low risk | - | - | Normal | Normal | - | Amniocytes
Amniocytes | - | | N504
N505 | 24.6
22.4 | 31
32 | NF 6.3 mm, decreased head circumference | 19.1
10.4 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes | Liveborn
Liveborn | | N506
N507 | 27.1
18.4 | 33
36 | Porta hepatis cystic, dilated common bile duct, single umbilical artery Cystic hygroma | 9.9 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - |
Amniocytes
Amniocytes | Liveborn
Elective abortion | | N508 | 24.7 | 36 | Ventricular septal defect, abnormal ear morphology Short femur, decreased biparietal diameter and head circumference | 17.8 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N509
N510 | 25.4
24.6 | 33
32 | Short femur, decreased biparietal diameter and head circumference Short femur and humerus | 14.0 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N511
N512 | 24.3 | 31
30 | Small feuts, echogenic bowe, right clubfoot
Cystic hygroma | 5.0 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N513 | 24.7 | 33 | Left kidney dysplasia | 26.5 | Low risk | - | - | Normal | Normal | - | Amniocytes | - | | N514
N515 | 21.4 | | Short femur, decreased head circumference, bilateral choroidal cyst
Nasal bone absent | 9.7 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N516
N517 | 16.7
27.7 | 27
36 | Unclear nasal bone
Small fetus,echogenic bowel, | 12.5 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N518 | 24.6 | 29 | Ventricular septal defect, bilateral choroidal cyst | 7.4 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | - | | N519
N520 | 23.0
25.0 | 32
28 | NF 9.7 mm Small fetus, decreased head and abdominal circumference | 7.9 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N521
N522 | 23.1
22.1 | 27
31 | Bilateral lateral ventriculomegaly, polyhydramnios NF 7.0 mm, short nasal bone | 7.1
9.6 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N523 | 21.6 | 32 | Left chest hypoplasia | 10.8 | Low risk | | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N524
N525 | 26.1
23.0 | 30
36 | Short femur and humerus Echogenic bowel, bright spots on the left ventricle | 9.7 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N526
N527 | 24.4
24.0 | 29
28 | Cardiovascular system abnormalities, echogenic bowel Butterfly vertebrae | 10.0 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N528 | 25.3 | 39 | Left kidney dysplasia, cardiovascular system abnormality | 20.7 | Low risk | - | - | Normal | Normal | - | Amniocytes | Liveborn | | N529
N530 | 23.0
16.9 | | Cardiovascular system abnormality NT 4.5 mm | 9.3
5.8 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N531 | 23.7 | 30 | Left kidney dysplasia, multicystic kidney dysplasia | 21.9
31.9 | Low risk | - | Normal | Normal
Normal | - | - | Product of conception | Liveborn | | N532
N533 | 29.9
25.1 | 28
27 | Short femur and humerus
Ventricular septal defect | 11.1 | Low risk
Low risk | - | Normal
Normal | Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn
Liveborn | | N534
N535 | 16.3
22.9 | | NT 4.8 mm
NF 6.8 mm | 8.9 | Low risk
Low risk | - | Normal | Normal | Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N536 | 24.0 | 27 | Left kidney dysplasia, polycystic kidney dysplasia | 21.6 | Low risk | - | - | Normal | | - | Product of conception | Elective abortion | | N537
N538 | 22.4
22.3 | 33
40 | Cardiovascular system abnormality NF 6.5 mm | 13.9
9.2 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N539
N540 | 22.6
23.3 | 37
29 | NF 6.9 mm
NF 6.4 mm | 16.9 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N541 | 32.3 | 29 | Cardiac defects | 21.9 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N542
N543 | 24.1
24.6 | | Left kidney dysplasia
NF 6.9 mm | 9.0 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N544
N545 | 23.0
25.7 | | NF 8.5 mm
Right lateral ventriculomegaly | 15.9 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N546 | 23.4 | 28 | NF 6.6 mm | 9.2 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N547
N548 | 23.4
17.1 | | NF 6.7 mm
Increased NT | 16.6
4.8 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N549
N550 | 22.3
16.1 | | NF 7.8 mm
NT 4.8 mm | 16.9
7.3 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N551 | 16.4 | 33 | Cystic hygroma | 5.9 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N552
N553 | 23.6
24.9 | 24
26 | Microcephaly Situs inversus viscerum, tricuspid regurgitation | 9.7 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N554
N555 | 30.4
25.0 | 27 | Abnormal morphology and position of stomach bubble, dilated bowel Thickened soft tissue, limbs abnormalities | 12.7
19.5 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N556 | 22.1 | 28 | NF 6.4 mm | 10.5 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N557
N558 | 30.4
30.4 | 26
35 | NF 6.6 mm
Small fetus | 11.2 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N559
N560 | 23.6 | 30 | Tetralogy of Fallot
NF 6.9 mm | 14.0
19.5 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N561 | 22.7
22.9 | | Duodenal atresia, cystic lesion below the liver | 13.5 | Low risk | - | Normal | Normal | Normal
Normal | - | Amniocytes | Elective abortion | | N562
N563 | 24.7
17.6 | 23
29 | Echogenic bowel, nasal bone hypoplasia Cystic hygroma | 11.3 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N564
N565 | 22.0 | 32
35 | Short femur, decreased head circumference | 17.3 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Elective abortion | | N566 | 25.9
19.9 | 29 | Left kidney dysplasia, polycystic kidney dysplasias
Left kidney dysplasia, polycystic kidney dysplasias | 24.3
8.0 | Low risk
Low risk | - | Normal
Normal | Normal | Normal | - | Product of conception
Amniocytes | Elective abortion | | N567
N568 | 25.1
25.1 | 25
27 | Decreased biparietal diameter and head circumference Ventricular septal defect, persistent left superior vena cava | 16.3 | Low risk
Low risk | - | Normal | Normal | Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N569 | 16.4 | 26 | NT 3.7 mm | 6.4 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | - | | N570
N571 | 28.1
23.9 | 26
25 | Short femur, dilated bilateral renal pelvis Dilated bilateral renal pelvis, parenchymal echo above the diaphragm | 10.9
6.8 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N572
N573 | 24.4
16.3 | 30
31 | Increased NT, short femur and humerus, cardiac defects
NT 5.6 mm | 17.3
8.1 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N574 | 25.7 | 30 | Persistent left superior cavity aortic arch with narrow isthmus | 21.0 | Low risk | <u> </u> | Normal | Normal | Normal | - | Amniocytes | - | | N575
N576 | 23.0
22.6 | 35 | Bilateral lateral ventriculomegaly Cardiac defects, tetralogy of Fallot | 8.6
17.7 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | -
Liveborn | | N577
N578 | 28.4
24.7 | 25
32 | NT 4.5 mm, ductus venosus absent
Short femur and humerus, decreased head circumference | 11.8
7.4 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N579 | 26.6 | 38 | Echogenic bowel, dilated renal pelvis | 14.1 | Low risk | | Normal | Normal | Normal | Ė | Amniocytes | Liveborn | | N580
N581 | 24.3
24.7 | | Renal pelvis separation, single umbilical artery Renal dysplasia | 11.5
12.4 | Low risk
Low risk | Normal - | Normal
Normal | Normal
Normal | Normal
Normal | Normal | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N582
N583 | 12.3 | | NT 4.7 mm | 7.3 | | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes | Elective abortion | | N584 | 29.9 | 33 | Cardiac defects, bilateral ventricles slightly asymmetric
Short femur and humerus | 18.8 | Low risk | | Normal | Normal | Normal | | Amniocytes
Amniocytes | Liveborn | | N585
N586 | 24.1
24.0 | 25
26 | Cardiac defects Hyperechogenic kidneys | 15.2
5.2 | Low risk
Low risk | Normal | Normal
Normal |
Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Elective abortion | | N587
N588 | 22.4 | 29 | Bright spots on the left ventricle, dilated left renal pelvis Short nasal bone, nasal bone hypoplasia | 7.8 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N589 | 24.1
24.0 | 32 | Ventricular septal defect | 9.6
14.9 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn
Liveborn | | N590
N591 | 23.4
25.3 | 31
37 | Right aortic arch Echogenic bowel, NF 6.3 mm | 8.0
17.0 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N592 | 26.9 | 24 | Double renal pelvis, nasal bone hypoplasia | 26.5 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N593
N594 | 25.0
28.7 | | Stenosis of pulmonary artery, ventricular septal defect Dilatation of the renal pelvis, unilateral choroidal cyst | 20.4
18.3 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N595
N596 | 19.6
23.0 | | Atrial septal defect
NF 7.1 mm | 7.7 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N597 | 23.0 | 35 | NF 8.0 mm | 15.9 | Low risk | | Normal | Normal | Norma | Ė | Amniocytes | Liveborn | | N598
N599 | 22.6
22.7 | 33
31 | Bright spots on the left ventricle NF 7.3 mm | 16.7 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N600
N601 | 31.7
16.7 | 28
28 | Small intestinal obstruction Cystic hygroma | 23.9 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N602 | 23.4 | 33 | Renal agenesis, decreased head circumference | 5.5 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N603
N604 | 25.9
17.7 | 26
34 | Horseshoe kidney, single umbilical artery
NT 5.0 mm | 12.8
7.1 | Low risk
Low risk | Normal - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N605
N606 | 15.7 | 32 | NT 4.7 mm
NF 6.4 mm | 6.2 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes | Liveborn
Liveborn | | N607 | 16.1 | 28 | NF 7.7 mm | 13.0 | Low risk | - | Normal | Normal | Normal | - | Amniocytes
Amniocytes | Liveborn | | N608
N609 | 24.3
22.3 | 28
27 | Cardiac defects, atrial septal defectsingle
Enlarged stomach bubble, polyhydramnios | 11.4
9.7 | Low risk
Low risk | 1 | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N610 | 22.7 | | NF 6.1 mm | 12.1 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | Subject | Gestation
age (wks) | Maternal
age (yrs) | Indication | FF
(%) | Comprehensive prenatal | CMA | Karyotyping | CNV-seq | NGS-SGD | WES | Specimen type | Pregnancy outcome | |--------------|------------------------|-----------------------|---|--------------|------------------------------|------------------|------------------|------------------|------------------|------------------|-------------------------------------|----------------------------------| | | | | | | cfDNA
screening
result | | | | | | | | | N611
N612 | 23.0
23.9 | | NF 9.0 mm | 10.7 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N613
N614 | 22.6
22.6 | 33 | Pulmonary stenosis and insufficiency, small right ventricle NF 6.8 mm, ventricular septal defect | 10.9 | | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N615 | 13.7 | 27 | NF 6.4 mm
Meningoencephalocele, enlarged bilateral rena | 9.0
8.7 | Low risk | | Normal | Normal | Normal | - | Product of conception | Liveborn
Elective abortion | | N616
N617 | 24.9
22.7 | 30 | Echogenic bowel, unossified nasal bone
Echogenic bowel | 8.6
7.7 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N618
N619 | 24.1
20.3 | 30 | Short femur, microcephaly Deviation of the thumb | 13.4
11.2 | | | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N620
N621 | 22.1
25.3 | 23 | NF 6.4 mm
Echogenic bowel | 15.8
13.8 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N622
N623 | 16.1
22.6 | 29 | NT 4.5 mm, cleft lip and palate
NF 6.5 mm | 19.3
7.8 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N624
N625 | 22.6
23.0 | | Dilated coronary vein, ventricular septal defect Urinary system abnormalities | 7.8
14.9 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N626
N627 | 17.4
17.6 | 32 | NT 3.7 mm
NT 3.2 mm | 12.5
7.3 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal | - | Amniocytes
Amniocytes | Elective abortion | | N628
N629 | 23.3
30.7 | | NF 6.4 mm
Bilateral lateral ventriculomegaly | 8.6
17.2 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N630
N631 | 16.7
22.9 | 32 | NT 3.3 mm
NF 6.4 mm | 10.7
7.9 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N632
N633 | 22.9
24.9 | | NF 7.4 mm
NF 7.1 mm | 12.7
16.4 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N634
N635 | 25.0
23.1 | 36 | Lateral ventriculomegaly NF 6.1 mm | 12.0 | Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N636
N637 | 22.9 | 38 | NF 6.6 mm
Short nasal bone | 15.4 | | | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N638 | 21.9 | 30 | Abnormal right atrium, butterfly vertebra | 10.1 | Low risk | • | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N639
N640 | 24.3
22.3 | 30 | Hyperechogenic left ventricle, tricuspid regurgitation
NF 6.5 mm | 19.0 | | | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N641
N642 | 28.1
22.6 | 36 | Enlarged posterior fossa
Ventricular septal defect | 21.2
16.1 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N643
N644 | 26.7
23.4 | 23 | Situs inversus viscerum, interrupted inferior vena cava
Small fetus | 13.1
11.5 | Low risk
Low risk | Normal - | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn
Liveborn | | N645
N646 | 16.9
17.3 | 29 | NT 5.3 mm
NT 4.6 mm | 7.7
15.4 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N647
N648 | 24.3
25.6 | 40 | NF 6.5 mm
Kidney defect | 12.6
11.4 | Low risk | Normal | Normal
Normal | Normal
Normal | Normal
Normal | Normal | Amniocytes
Amniocytes | Liveborn
Liveborn | | N649
N650 | 19.1
24.0 | | NT 5.1 mm
NF 6.5 mm, echogenic bowel | 9.6
8.9 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Spontaneous abortion
Liveborn | | N651
N652 | 25.0
21.0 | 31 | Small fetus, oligohydramnios, cardiomegaly
Right aortic arch, aberrant left subclavian artery | 15.8
11.9 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N653
N654 | 17.0
23.3 | 37 | Small fetus
Dilated ventricle | 11.8 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N655
N656 | 21.4 | 27 | Nasal bone absent Right aortic arc, aberrant left subclavian artery | 10.8 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N657
N658 | 18.0 | 29 | NT 3.1 mm | 6.7 | Low risk | - | Normal
Normal | Normal | Normal
Normal | - | Amniocytes | Liveborn | | N659 | 19.0 | 23 | NT 3.5 mm
Cleft lip and palate | 17.5 | Low risk
Low risk | - | Normal | Normal
Normal | Normal | - | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N660
N661 | 22.9
25.3 | 31 | Cleft lip
Cleft lip | 7.7
12.4 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N662
N663 | 25.6
25.9 | 23 | Anomalous intrahepatic portal vein
Cystic hygroma | 7.5
10.0 | Low risk
Low risk | • | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N664
N665 | 17.1
24.9 | 32 | Left choroidal cyst
Choroidal cyst | 12.0 | Low risk
Low risk | - | Normal
Normal | Normal
Normal |
Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N666
N667 | 23.1
20.9 | | Right choroidal cyst
Bilateral choroidal cys | 5.8
8.8 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N668
N669 | 24.4
17.0 | | Left choroidal cyst
Bilateral choroidal cyst | 24.7
16.5 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N670
N671 | 23.0
24.3 | | Right aortic arch, left ductal arch, incomplete vascular ring Echogenic abdominal cavity and bowel, celiac effusion | 18.9
15.6 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N733
N734 | 22.7 | 33 | Pulmonary stenosis
Hypoplastic left heart, ventricular septal defect | 9.7
15.1 | Low risk
Low risk | - | Normal | Normal | Normal | Normal | Amniocytes
Product of conception | Liveborn
Elective abortion | | N735
N736 | 16.1
24.7 | | Cystic hygroma Suspected ectodermal dysplasia, and cleft lip/palate syndrome | 11.6
18.6 | Low risk
Low risk | | - | - | - | Normal | Amniocytes Product of conception | Liveborn
Elective abortion | | N737
N738 | 37.1
29.0 | 30 | Cerebral white matter hypoplasia
Small fetus | 30.1
7.9 | Low risk
Low risk | - | - | -
Normal | - | Normal
Normal | Product of conception
Amniocytes | Liveborn
Elective abortion | | N739
N740 | 24.3
22.0 | 39 | Lobar holoprosencephaly Right renal pelvis separation | 5.2 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal | Normal | Product of conception
Amniocytes | Elective abortion | | N741
N742 | 16.3
27.6 | 28 | Bilateral cleft lip and palate, fingers and toes yndactyly Growth restriction | 7.2 | Low risk
Low risk | - | Homis | Normal
Normal | Normal
Normal | Normal | Product of conception
Amniocytes | Elective abortion
Liveborn | | N743
N744 | 32.0
25.1 | 22 | Growth restriction | 11.1 | Low risk | - | Named | Normal | Normal
Normal | Normal | Amniocytes | Liveborn | | N745 | 21.0 | 29 | Small fetus, reduced septum pellucidum
Multicystic left kidney dysplasia, ventricular septal defect | 13.4 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal | Normal | Amniocytes
Amniocytes | Liveborn
Liveborn | | N746
N747 | 24.4
17.4 | 29 | Digestive system abnormalities, anal atresia
NT 4.5 mm | 12.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N748
N749 | 20.0 | 34 | Growth restriction, bilateral lateral ventriculomegaly, echogenic bowel
Left hydronephrosis | 4.0
19.3 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Normal
- | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N750
N751 | 27.3
23.6 | 33 | Left multicystic kidney dysplasia
Diaphragmatic hernia | 19.8
8.8 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Normal | Amniocytes
Amniocytes | Elective abortion | | N752
N753 | 24.9
16.9 | 30 | Decreased head circumference, abnormal skull morphology
NT 3.9 mm | 12.2
8.8 | | 1 1 | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Amniocytes
Amniocytes | Liveborn
Liveborn | | N754
N755 | 24.6
26.3 | 26 | Spinal abnormalities, lateral ventriculomegaly
Short femur, decreased head circumference, duplicated right kidney | 10.4
16.6 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Amniocytes
Amniocytes | Liveborn
Liveborn | | N756
N757 | 24.7
25.7 | | Ventricular septal defect, narrow aortic valve annulus and isthmus
Cardiac defects, increased echogenicity of the mitral valve | 12.6
19.0 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N758
N759 | 25.6
18.9 | 31 | Multiple right renal cysts
NT 9.3 mm | 10.2
11.1 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal | Normal
Normal | Product of conception
Amniocytes | Liveborn
Liveborn | | N760
N761 | 23.1
20.6 | 26
32 | Bilateral renal pelvis separation, omphalocele
Multicystic kidney dysplasia | 18.9
8.0 | Low risk
Low risk | Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N762
N763 | 28.0
31.9 | 34 | Cerebellar vermis hypoplasia, polyhydramnios
Small fetus, decreased head circumference, short femur | 15.0 | Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Amniocytes
Amniocytes | Liveborn
Liveborn | | N764
N765 | 26.4
16.7 | 27 | Single umbilical artery, double left renal artery NT 5.4 mm | 12.1 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal
Normal | Normal | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N766
N767 | 20.9 | 31 | NI 5.4 mm
Kidney dysplasia, oligohydramnios
Curved rioht femur | 8.2
8.6 | Low risk
Low risk | - | Normal | Normal
Normal | Normal
Normal | Normal | Product of conception
Amniocytes | Elective abortion
Liveborn | | N768 | 31.3 | 28 | Decreased head and abdominal circumference | 18.9 | Low risk | - | Normal | Normal | Normal | Normal | Amniocytes | Elective abortion | | N769
N770 | 23.7
25.1 | 29 | Transposition of the heart great arteries Bilateral ateral wentriculomegaly, berrant left subclavian artery | 14.5 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal
Normal | Normal | Amniocytes
Amniocytes | Liveborn - | | N771
N772 | 20.4 | 31 | Left multicystic kidney dysplasia
Flat nose | 17.2 | Low risk | Normal - | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Amniocytes
Amniocytes | Liveborn - | | N773
N774 | 17.7
28.9 | 34 | NT 4.4 mm
Left lateral ventriculomegaly, aberrant right subclavian artery | 17.8
19.5 | Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Amniocytes
Amniocytes | Liveborn
Liveborn | | N775
N776 | 22.6
24.0 | 37 | Aberrant right subclavian artery, echogenic bowel and ventricle
Bilateral clubfoot, bright spots on the left ventricle | 9.2
7.6 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | Amniocytes
Amniocytes | - | | N777
N778 | 24.4
18.0 | | Clubfoot, bright spots on the left ventricle
Standard prenatal cfDNA screening high risk | 13.6
14.5 | Low risk
Low risk | 0 0 | Normal - | Normal
Normal | Normal - | Normal
- | Amniocytes
Amniocytes | Liveborn
Liveborn | | N779
N780 | 18.3
23.0 | 31
33 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 10.1
8.8 | | | Normal | Normal
Normal | Normal | - | Amniocytes
Amniocytes | Liveborn - | | N781
N782 | 17.4
21.3 | 35 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 8.9
6.5 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N783
N784 | 17.0 | 32 | Standard prenatal cfDNA screening high risk Standard prenatal cfDNA screening high risk Standard prenatal cfDNA screening high risk | 8.4 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N785
N786 | 19.4
16.0 | 30 | Standard prenatal cIDNA screening nigh risk
Standard prenatal cIDNA screening high risk
Standard prenatal cIDNA screening high risk | 4.5
17.0 | Low risk | Normal | - | Normal
Normal | Normal
Normal | - | Amniocytes Amniocytes Amniocytes | Elective abortion | | N787
N788 | 21.6
26.0 | 38 | Standard prenatal cIDNA screening nigh risk
Standard prenatal cIDNA screening high risk
Standard prenatal cIDNA screening high risk | 7.3 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes Amniocytes Amniocytes | Elective abortion | | N789 | 26.9 | 25 | Standard prenatal cfDNA screening high risk | 17.3 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N790
N791 | 19.1
19.6 | 35 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 18.0
12.6 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N792
N793 | 25.6
18.7 | | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 13.1
15.0 | Low risk
Low risk | | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | | | | | | | | | | | | | | | Subject | Gestation | Maternal | Indication | FF | Comprehensive | | | iagnostic testing | | | Specimen type | Pregnancy outcome | |----------------------|----------------------|-----------|---|----------------------|----------------------------------|------------------|------------------|----------------------------|----------------------------|-----|--|---| | , | age (wks) | age (yrs) | | (%) | prenatal
cfDNA
screening | CMA | Karyotyping | CNV-seq | NGS-SGD | WES | | | | N794 | 21.3 | 30
| Standard prenatal cfDNA screening high risk | 13.4 | result
Low risk | - | - | Normal | Normal | - | Amniocytes | Liveborn | | N795
N796 | 22.7
19.9 | 34 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 13.1
14.2 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N797
N798 | 21.4
17.1 | 23 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 11.4
18.0 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N799
N800 | 21.0
21.6 | 32 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 12.2
12.8 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion | | N801
N802 | 34.6
17.3 | 31 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 35.4
8.0 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | - | | N803
N804 | 18.0
24.0 | 29 | Standard prenatal cfDNA screening high risk Standard prenatal cfDNA screening high risk | 7.2
31.4 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N805
N806
N807 | 20.0
18.0
19.4 | 39 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 7.1
7.5
6.0 | Low risk
Low risk
Low risk | - | Normal | Normal
Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes
Amniocytes | Liveborn
Liveborn | | N808
N809 | 20.9 | 31 | Standard prenatal cIDNA screening high risk Standard prenatal cIDNA screening high risk Standard prenatal cIDNA screening high risk | 13.1 | Low risk
Low risk | | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn
Elective abortion | | N810
N811 | 19.3
24.6 | | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 19.8 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn | | N812
N813 | 18.0
17.4 | | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 9.2 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N814
N815 | 18.9
22.4 | 31 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 12.0
11.4 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N816
N817 | 22.3
20.3 | 25 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 7.3
9.7 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn
Liveborn | | N818
N819 | 19.3
19.7 | | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 12.4
10.6 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N820
N821 | 26.0
22.3 | 35 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 19.0 | | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N822
N823
N824 | 19.7
20.4
19.0 | 35 | Standard prenatal cfDNA screening high risk
Standard prenatal cfDNA screening high risk | 9.3
18.4 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Elective abortion
Liveborn
Liveborn | | N825
N826 | 17.4
16.1 | 39 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 9.5 | Low risk
Low risk
Low risk | - | Normal | Normal
Normal | - | - | Amniocytes
Amniocytes | Liveborn | | N827
N828 | 18.4 | 31 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 10.1 | Low risk | - | Normal
Normal | Normal
Normal | - | - | Amniocytes
Amniocytes
Amniocytes | Liveborn
Liveborn | | N829
N830 | 19.7 | 44 | Maternal serum screening high risk
Maternal serum screening high risk | 7.8 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N831
N832 | 18.6 | 36
34 | Maternal serum screening high risk
Maternal serum screening high risk | 6.6
8.0 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N833
N834 | 18.1
18.0 | 40
33 | Maternal serum screening high risk
Maternal serum screening high risk | 14.9
18.7 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N835
N836 | 18.4
19.4 | 31 | Maternal serum screening high risk
Maternal serum screening high risk | 17.1
8.9 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N837
N838 | 18.7
19.0 | 25 | Maternal serum screening high risk
Maternal serum screening high risk | 11.7 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N839
N840 | 20.4
18.0 | 34 | Maternal serum screening high risk
Maternal serum screening high risk | 7.7 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N841
N842
N843 | 22.0
19.9 | 31 | Maternal serum screening high risk
Maternal serum screening high risk | 9.0 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N844
N845 | 19.0
31.7
19.9 | 33 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 8.5
24.9
9.6 | Low risk
Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N846
N847 | 18.6 | 30 | Maternal serum screening high risk
Maternal serum screening high risk
Maternal serum screening high risk | 14.7 | Low risk
Low risk | - | Normal
Normal | Normal
Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes
Amniocytes | Liveborn | | N848
N849 | 19.3 | 27 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 6.1 | Low risk
Low risk | Normal
Normal | Normal | Normal
Normal | Normal | - | Amniocytes
Amniocytes | -
Liveborn | | N850
N851 | 21.0 | 32 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 10.0
19.4 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N852
N853 | 21.4
17.9 | 32 | Maternal serum screening high risk
Maternal serum screening high risk | 5.8
11.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N854
N855 | 19.6
18.7 | 22
31 | Maternal serum screening high risk
Maternal serum screening high risk | 15.5
23.2 | Low risk
Low risk | Normal
Normal | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N856
N857 | 19.0
18.9 | 33 | Maternal serum screening high risk Maternal serum screening high risk | 17.6
15.8 | Low risk | Normal
- | Normal - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N858
N859 | 18.1
19.4 | 33 | Maternal serum screening high risk
Maternal serum screening high risk | 6.0 | Low risk
Low risk | - | | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N860
N861 | 20.3
19.0 | 35 | Maternal serum screening high risk
Maternal serum screening high risk | 4.8 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N862
N863
N864 | 28.9
16.0
17.6 | 38 | Maternal serum screening high risk
Maternal serum screening high risk
Maternal serum screening high risk | 21.2
13.9
14.8 | Low risk
Low risk
Low risk | - | - | Normal
Normal
Normal | Normal
Normal
Normal | - | Amniocytes
Amniocytes
Amniocytes | Liveborn | | N865
N866 | 20.4 | 22 | waternia serum screening riigh riisk
Maternal serum screening high risk
Maternal serum screening high risk | 17.8 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N867
N868 | 19.0 | 35 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 5.6 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N869
N870 | 24.0
18.6 | 33 | Maternal serum screening high risk
Maternal serum screening high risk | 18.2
15.9 | Low risk
Low risk | - | - | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N871
N872 | 20.0
18.0 | | Maternal serum screening high risk
Maternal serum screening high
risk | 11.5
13.7 | Low risk
Low risk | - | Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N873
N874 | 18.1
18.6 | | Maternal serum screening high risk
Maternal serum screening high risk | 8.4
5.8 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N875
N876 | 20.9
20.1 | 29 | Maternal serum screening high risk
Maternal serum screening high risk | 11.9
4.1 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn - | | N877
N878 | 17.4
16.9 | 32 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 18.6 | Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N879
N880
N881 | 19.0
17.4
18.9 | 26 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 8.0
15.6
7.7 | Low risk
Low risk
Low risk | - | Normal
Normal | Normal
Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N882
N883 | 19.1
22.0 | 25 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 9.9
7.2 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes
Amniocytes | Liveborn
Liveborn | | N884
N885 | 17.7 | 42 | waterna serum screening night risk
Maternal serum screening high risk
Maternal serum screening high risk | 9.6 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N886
N887 | 18.7 | 46 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 7.9
12.6 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N888
N889 | 17.6
16.9 | 40
38 | Maternal serum screening high risk
Maternal serum screening high risk | 9.9
14.0 | | - | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn | | N890
N891 | 17.0
19.7 | 21 | Maternal serum screening high risk
Maternal serum screening high risk | 9.2
14.2 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N892
N893 | 20.6
17.0 | 36 | Maternal serum screening high risk
Maternal serum screening high risk | 12.6 | | - | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | Liveborn | | N894
N895 | 17.6
19.0 | 32 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 8.4 | Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N896
N897
N898 | 17.1
16.0
19.0 | 29 | Maternal serum screening high risk Maternal serum screening high risk Maternal serum screening high risk | 8.6
24.5
13.2 | Low risk
Low risk
Low risk | - | Normal
Normal | Normal
Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes
Amniocytes | Liveborn
Liveborn | | N899
N899
N900 | 19.0
16.0
20.3 | 26 | Maternal serum screening high risk
Maternal serum screening high risk
Maternal serum screening high risk | 13.2
13.8
11.9 | Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes
Amniocytes | Liveborn | | N901
N902 | 18.6
20.7 | 34 | waternal serum screening nigh risk
Maternal serum screening high risk
Maternal serum screening high risk | 5.7 | | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N903
N904 | 20.0 | 37
31 | Maternal serum screening high risk
Maternal serum screening high risk | 10.2 | | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn | | N905
N906 | 21.7
19.0 | 38
33 | Maternal serum screening high risk
Maternal serum screening high risk | 9.2
10.3 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N907
N908 | 18.3
17.0 | 29
24 | Maternal serum screening high risk
Maternal serum screening high risk | 12.5
3.9 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N909
N910 | 18.3
19.4 | 38 | Maternal serum screening high risk
Maternal serum screening high risk | 11.5
4.9 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | | Amniocytes
Amniocytes | | | N911
N912 | 23.3
16.0 | 32 | Maternal serum screening high risk
Maternal serum screening high risk | 9.2
7.6 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N913
N914 | 20.0 | 40 | Maternal serum screening high risk Maternal serum screening high risk | 9.2
8.3 | Low risk
Low risk | - | Normal
Normal | Normal
Normal | Normal
Normal | - | Amniocytes
Amniocytes | Liveborn
Liveborn | | N915 | 20.1 | 27 | Maternal serum screening high risk | 13.3 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | | Gestation | Maternal | | FF | Comprehensive | Diagnostic testing | | | | | | | |---------|-----------|-----------|---|------|---------------------|--------------------|-------------|---------|---------|-----|---------------|-------------------| | Subject | age (wks) | age (yrs) | Indication | (%) | prenatal | CMA | Karyotyping | CNV-seq | NGS-SGD | WES | Specimen type | Pregnancy outcome | | | | | | | cfDNA | | | | | | | | | | | | | | screening
result | | | | | | | | | N916 | 17.0 | 39 | Maternal serum screening high risk | 9.3 | Low risk | _ | Normal | Normal | Normal | _ | Amniocytes | Liveborn | | N917 | 18.6 | | Maternal serum screening high risk | 15.4 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N918 | 20,6 | | Maternal serum screening high risk | 10.3 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N919 | 17,6 | | Maternal serum screening high risk | 7.8 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N920 | 24.0 | | Maternal serum screening high risk | 5.8 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N921 | 20.0 | | Maternal serum screening high risk | 12.7 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | - | | N922 | 17.4 | | Maternal serum screening high risk | 5.3 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N923 | 17,1 | | Maternal serum screening high risk | 13.8 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N924 | 18.0 | | Maternal serum screening high risk | 8.9 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N925 | 18.6 | | Maternal serum screening high risk | 16.7 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N926 | 19.0 | 36 | Maternal serum screening high risk | 7.6 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N927 | 18.9 | 32 | Maternal serum screening high risk | 18.5 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N928 | 18.0 | 32 | Maternal serum screening high risk | 13.5 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N929 | 19.0 | 37 | Maternal serum screening high risk | 6.3 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | - | | N930 | 21.7 | 38 | Maternal serum screening high risk | 6.1 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N931 | 20.0 | 42 | Maternal serum screening high risk | 10.9 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N932 | 17.7 | 38 | Maternal serum screening high risk | 9,6 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N933 | 20.0 | 40 | Maternal serum screening high risk | 4.3 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N934 | 19.9 | 35 | Maternal serum screening high risk | 10.4 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | - | | N935 | 19.1 | 30 | Maternal serum screening high risk | 3.4 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N936 | 19.9 | 26 | Maternal serum screening high risk | 5.4 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Elective abortion | | N937 | 17.6 | 28 | Clinical history suggestive of genetic conditions | 8.7 | Low risk | - | Normal | Normal | - | - | Amniocytes | Liveborn | | N938 | 18.6 | 38 | Clinical history suggestive of genetic conditions | 12.4 | Low risk | - | Normal | Normal | - | - | Amniocytes | Liveborn | | N939 | 20.0 | 31 | Clinical history suggestive of genetic conditions | 24.7 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N940 | 18.6 | 31 | Clinical history suggestive of genetic conditions | 9.3 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N941 | 19.4 | 38 | Clinical history suggestive of genetic conditions | 5.7 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N942 | 19.0 | 37 | Clinical history suggestive of genetic conditions | 3.6 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N943 | 19.7 | 29 | Clinical history suggestive of genetic
conditions | 10.7 | Low risk | Normal | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N944 | 16.4 | 38 | Clinical history suggestive of genetic conditions | 6.5 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | - | | N945 | 16.3 | 35 | Clinical history suggestive of genetic conditions | 10.9 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N946 | 25.4 | 28 | Clinical history suggestive of genetic conditions | 12.2 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | | N947 | 16.7 | 27 | Clinical history suggestive of genetic conditions | 14,3 | Low risk | - | Normal | Normal | Normal | - | Amniocytes | Liveborn | N947 | 16.7 | 27 | Clinical history suggestive of genetic conditions | 14.3 | Low risk | Normal | Normal | Normal | Amnico;tes | Liveborn | FF: fetal fraction. CMA: chromosome microarray analysis. CNV-seq: next-generation sequencing based chromosomal copy number variation analysis. NGS-SGD: next-generation sequencing panel for all targeted single-gene disorders. WES: whole-exome sequencing. # Extended Data Table 7 | Pregnancy outcomes in participants with positive and negative diagnostic testing results | Pregnancy outcomes | Negative
cases – no.
(%) | Positive cases
– no. (%) | Positive cases with ultrasound abnormalities – no. (%) | Positive cases with other indications – no. (%) | |----------------------|--------------------------------|-----------------------------|--|---| | Live birth | 612 (64.2) | 11 (8.0) | 4 (4.0) | 7 (18.9) | | Elective abortion | 162 (17.0) | 106 (77.4) | 82 (82.0) | 24 (64.9) | | Spontaneous abortion | 1 (0.1) | 1 (0.7) | 1 (1.0) | 0 | | Unknown ¹ | 178 (18.7) | 19 (13.9) | 13 (13.0) | 6 (16.2) | | Total ² | 953 | 137 | 100 | 37 | ## Extended Data Table 8 | Parental age and the occurrence of different genetic variants | Subjects | Mean maternal age, years
(number of subjects) | <i>P</i> -value ¹ | Mean paternal age, years
(number of subjects) | <i>P</i> -value | | |---|--|------------------------------|--|-----------------|--| | True positive for autosome aneuploidies | 32.8 (61) | 0.005 | 34.4 (42) | 0.037 | | | True negative for autosome aneuploidies | 30.7 (1,015) | 0.005 | 32.5 (781) | 0.037 | | | True positive sex chromosome aneuploidies | 30.9 (28) | 0.042 | 33.7 (20) | 0.512 | | | True negative for sex chromosome aneuploidies | 30.8 (1,052) | 0.943 | 32.6 (804) | 0.512 | | | True positive for microdeletions | 30.9 (9) | 0.965 | 32.4 (7) | 0.887 | | | True negative for microdeletions | 30.8 (1,062) | 0.965 | 32.6 (813) | 0.007 | | | True positive for monogenic conditions | 31.0 (37) | 0.650 | 33.2 (23) | 0.400 | | | True negative for monogenic conditions | 30.8 (966) | 0.658 | 32.5 (741) | 0.486 | | ¹T-test was performed with a two-tailed test, and multiple comparisons were not conducted. # nature portfolio | Corresponding author(s): | Jinglan Zhang | |----------------------------|---------------| | Last updated by author(s): | Dec 5, 2023 | # **Reporting Summary** Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our <u>Editorial Policies</u> and the <u>Editorial Policy Checklist</u>. | <. | トつ | 1 | ıc: | ŀι | CS | |----|----|----|------|----|----| | J | ιa | ı. | I.O. | LΙ | LJ | | For | all st | atistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section. | |-------------|-------------|--| | n/a | Cor | nfirmed | | | | The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement | | | \boxtimes | A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly | | | \boxtimes | The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section. | | | \boxtimes | A description of all covariates tested | | | \boxtimes | A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons | | | \boxtimes | A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) | | | \boxtimes | For null hypothesis testing, the test statistic (e.g. F , t , r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable. | | \boxtimes | | For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings | | \boxtimes | | For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes | | \boxtimes | | Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated | | | ' | Our web collection on <u>statistics for biologists</u> contains articles on many of the points above. | ## Software and code Policy information about availability of computer code Data collection Microsoft Excel was used for the clinical data collection. Data analysis Customized computing code used in this study is available at https://github.com/Jinglan1/NIPS2/. Raw FASTQ were filtered and UMI preprocessed using FASTP 0.21.0, https://github.com/OpenGene/fastp. The clean FASTQ files were aligned to hg38 human reference using BWA 0.7.17-r1188, https://github.com/lh3/bwa and then sorted by Samtools 1.9, https://github.com/samtools/samtools/releases/. Consensus BAM files were generated by Gencore 0.15.0 and then finalized by BaseRecalibrator and ApplyBQSR GATK 4.1.8.0 followed by variant calling, https://gatk.broadinstitute.org. Raw variants were annotated by Annovar v2019-10-24, https://annovar.openbioinformatics.org/. Chromosomal microarray analysis was performed using ChAS software 3.1. For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information. ## Data Policy information about availability of data All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: - Accession codes, unique identifiers, or web links for publicly available datasets - A description of any restrictions on data availability - For clinical datasets or third party data, please ensure that the statement adheres to our policy The demographic data, clinical history, prenatal cfDNA screening, diagnostic test results, and the diagnostic test methodologies of all 1,090 participants in the final cohort are within the paper and the Extended Data. All the pathogenic single-gene variants and the key phenotypes of the subjects are available at the ClinVar database at https://www.ncbi.nlm.nih.gov/clinvar/submitters/508997/. The raw data files for all 1,090 participants are securely stored in an environment compliant with patients' privacy protection regulations within our laboratory and will be maintained for a minimum of ten years following publication. Access to these raw data files, unfiltered cfDNA gene sequencing data (VCF files) and locus-specific diagnostic sequencing results, is available upon request from the corresponding author, J.Z. (jinglanzhang@fudan.edu.cn or jinglanzhang@foxmail.com). This process is to assure that patients' data privacy will be safeguarded, and that the data will be utilized exclusively for non-commercial academic research purposes. All requests for the data access must originate from an academic institution and be accompanied by verifiable affiliation (e.g., a publicly accessible research investigator profile on the institution's website). Upon receipt of a qualified request, it will undergo review by a Data Privacy Committee (DPC), composed of two senior investigators from the study and an external reviewer, to verify that the data will be used exclusively for non-commercial, academic research purposes. After DPC approval, the execution of a Data Transfer Agreement is required which will explicitly stipulate non-disclosure to third party and that the data is to be used solely for non-commercial, academic research activities. Qualified requests will be processed within a three-week time frame. The hg38 reference genome sequence can be obtained at https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40/. # Research involving human participants, their data, or biological material Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), а | 090 qualified participants. The mean maternal age of all qualified participants was 30.8 years. |
---| | 090 qualified participants. The mean maternal age of all qualified participants was 30.8 years. | | ring pregnancies at the gestational ages of 12-18 weeks, 19-24 weeks, and ≥25 weeks was ing them, 876 (80.4%) had fetal ultrasound anomalies, 116 (10.6%) had abnormal maternal 9%) had high-risk results in standard prenatal cfDNA screening for chromosomal conditions, regnancy history suggesting an increased risk for fetal genetic conditions. This population was with elevated risks of fetal genetic conditions commonly seen in prenatal clinical setting. The us on pregnancies already identified as high-risk for fetal genetic conditions. In the general ese genetic conditions is expected to be much lower than in the high-risk group. This test's its positive predictive values (PPVs), in detecting ultra-rare genetic conditions in a | | ptember 10, 2022, 1,191 sequentially identified pregnant women were enrolled and followed als in different provinces of China. The recruitment was performed according to a previously 10.1136/bmjopen-2021-053617). The trial registration number is ChiCTR2100045739. | | ind approved by the internal review board at the Obstetrics and Gynecology Hospital of Fudan cal study led by the Obstetrics and Gynecology Hospital of Fudan University has received the uman genetic resources in China from the Ministry of Science and Technology (MOST) of registration number was ChiCTR2100045739 with a published study protocol. | | Coli Coli t | | Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection. | | | | | |--|-------------------------------|---|--|--| | ∠ Life sciences | Behavioural & social sciences | Ecological, evolutionary & environmental sciences | | | | For a reference copy of the document with all sections, see nature com/documents/ns-reporting-summary-flat ndf | | | | | # Life sciences study design All studies must disclose on these points even when the disclosure is negative. Sample size Before the start of this study, we performed a power analysis and planned to enroll at least 1,000 participants from whom we expected to detect at least 25 cases affected by the targeted chromosomal and monogenic conditions. This estimation was based on the detection rate among pregnancies with similar indications. The sample size in this study would allow a probability of 95% or above to observe a possible measuring error at the case level for both the chromosomal and monogenic conditions. Data exclusions Of the 101 excluded cases, 71 had no diagnostic test results available for fetal germline variants, 15 had maternal variants in targeted genomic regions interfering with fetal assessment, eight did not meet the sequencing depth requirements for the prenatal cfDNA screening assay, and seven failed quality control for singleton pregnancy due to multiple gestation or sample contamination. The final cohort consisted of 1,090 (91.5%) qualified participants whose pregnancies underwent further analyses, in which results derived from their comprehensive cfDNA screening and diagnostic testing were compared. Replication Participants were recruited from three tertiary hospitals in China including the Obstetrics and Gynecology Hospital of Fudan University (Shanghai), the Hunan Provincial Maternal and Child Health Care Hospital (Changsha), and the Women's Hospital of Zhejiang University (Hangzhou). The number of subjects from each hospital were collected given essentially equal participant availability to avoid potential population stratification. Randomization This was an observational study to investigate the clinical validity and detection rate of genetic conditions for a prenatal screening test. The patient cohort was consisted of sequentially identified pregnant women from three maternity hospitals in different provinces of China. In addition, the cohort included a large variety of fetal anomalies instead of targeted conditions (Table 1), which made this study more generalizable to uncover the detectability of the prenatal cfDNA screening for genetic conditions. Blinding This was a prospective, multicenter cohort study comparing the screening and diagnostic testing results of a comprehensive prenatal cfDNA screening covering three of the most frequent causes of human genetic condition: aneuploidies, microdeletions, and monogenic conditions. The diagnostic results for each case were not revealed until the screening test was finalized in order to evaluate the clinical performance of the prenatal cfDNA screening test. # Reporting for specific materials, systems and methods We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. | Materials & experimental systems | Methods | |----------------------------------|---------------------------| | n/a Involved in the study | n/a Involved in the study | | Antibodies | ChIP-seq | | Eukaryotic cell lines | Flow cytometry | | Palaeontology and archaeology | MRI-based neuroimaging | | Animals and other organisms | · | | Clinical data | | | Dual use research of concern | | | Plants | | | • | | ## Clinical data Policy information about clinical studies All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions. Clinical trial registration | The study registration number: ChiCTR2100045739 (https://www.chictr.org.cn/showprojEN.html?proj=125206). Study protocol The study was performed according to a previously published protocol (DOI: 10.1136/bmjopen-2021-053617). Data collection Between April 24, 2021, and September 10, 2022, 1,191 sequentially identified pregnant women were enrolled and followed up from three maternity hospitals in different provinces of China and the clinical data regarding their pregnancies were collected. Outcomes The outcomes of the study were the clinical validity of an expanded prenatal cfDNA screening and its detection rate for different types of genetic conditions causing fetal anomalies. Complete results for both screening and diagnostic testing (i.e., testing on chorionic villus sampling, amniocentesis, products of conception, etc.) were collected and compared for all qualified participants. The clinical validity was measured by calculating the screening test sensitivity, specificity, positive predictive value, negative predictive value, and the area under the receiver-operating-characteristic (ROC) curve (AUC). Only women with confirmatory genetic testing were included in the results and those without any genetic diagnostic testing results were excluded. The detection rates of a diagnostic genetic variant associated with aneuploidies, microdeletions, and monogenic conditions were measured for the entire cohort and with respect to different fetal anomalies. The study also aimed to collect the pregnancy outcome data of the participants by reviewing medical records, which included miscarriages, elective abortions, stillbirths, and live-birth deliveries. When medical records of pregnancy outcomes were not available in the participating hospitals, participants were contacted by phone up to three attempts and up until six weeks after the expected delivery date. Pregnancy outcomes and clinical examination results were evaluated to examine if they were consistent with the genetic diagnosis. # Plants | Seed stocks | Not applicable. | |-----------------------|-----------------| | Novel plant genotypes | Not applicable. | | Authentication | Not applicable. |