Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging diagnostics and therapeutics for Alzheimer disease

Abstract

Alzheimer disease (AD) is the most common contributor to dementia in the world, but strategies that slow or prevent its clinical progression have largely remained elusive, until recently. This Review highlights the latest advances in biomarker technologies and therapeutic development to improve AD diagnosis and treatment. We review recent results that enable pathological staging of AD with neuroimaging and fluid-based biomarkers, with a particular emphasis on the role of amyloid, tau and neuroinflammation in disease pathogenesis. We discuss the lessons learned from randomized controlled trials, including some supporting the proposal that certain anti-amyloid antibodies slow cognitive decline during the mildly symptomatic phase of AD. In addition, we highlight evidence for newly identified therapeutic targets that may be able to modify AD pathogenesis and progression. Collectively, these recent discoveries—and the research directions that they open—have the potential to move AD clinical care toward disease-modifying treatment strategies with maximal benefits for patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Select mechanisms contributing to neuronal dysfunction and degeneration during Alzheimer disease pathogenesis.
Fig. 2: Staging Alzheimer disease pathophysiology with fluid-based biomarkers.
Fig. 3: Pathophysiology beyond amyloid and tau.

Similar content being viewed by others

References

  1. World Health Organization. Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (2022).

  2. Alzheimer’s Association. Alzheimer’s Disease Facts and Figures. Alzheimer’s Disease and Dementia https://www.alz.org/alzheimers-dementia/facts-figures

  3. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    Article  PubMed  Google Scholar 

  4. Sims, J. R. et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. J. Am. Med. Assoc. 330, 512–527 (2023).

    Article  CAS  Google Scholar 

  5. Nichols, E. et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).

    Article  Google Scholar 

  6. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367, 795–804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vermunt, L. et al. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimer’s Dement. 15, 888–898 (2019).

    Article  Google Scholar 

  8. Ossenkoppele, R., van der Kant, R. & Hansson, O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 21, 726–734 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Chapleau, M., Iaccarino, L., Soleimani-Meigooni, D. & Rabinovici, G. D. The role of amyloid PET in imaging neurodegenerative disorders: a review. J. Nucl. Med. 63, 13S–19S (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Long, J. M. & Holtzman, D. M. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312–339 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glenner, G. G. & Wong, C. W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA 82, 4245–4249 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Levy, E. et al. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Hardy, J. & Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 12, 383–388 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Selkoe, D. J. The molecular pathology of Alzheimer’s disease. Neuron 6, 487–498 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Ossenkoppele, R. et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat. Med. 28, 2381–2387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Strikwerda-Brown, C. et al. Association of elevated amyloid and tau positron emission tomography signal with near-term development of Alzheimer disease symptoms in older adults without cognitive impairment. JAMA Neurol. 79, 975–985 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee, W. J. et al. Regional Aβ–tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading. Neuron 110, 1932–1943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan, P. et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature 612, 328–337 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He, Z. et al. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat. Med. 24, 29–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Busche, M. A. & Hyman, B. T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci. 23, 1183–1193 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, X. & Holtzman, D. M. Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity 55, 2236–2254 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nutma, E. et al. Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases. Preprint at https://doi.org/10.1101/2022.05.11.491453 (2022).

  26. Beaino, W. et al. Towards PET imaging of the dynamic phenotypes of microglia. Clin. Exp. Immunol. 206, 282–300 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pascoal, T. A. et al. Microglial activation and tau propagate jointly across Braak stages. Nat. Med. 27, 1592–1599 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Xiang, X. et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci. Transl. Med. 13, eabe5640 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Hansson, O. et al. The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimers Dement. 18, 2669–2686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lewczuk, P. et al. Cerebrospinal fluid Aβ42/40 corresponds better than Aβ42 to amyloid PET in Alzheimer’s disease. J. Alzheimer’s Dis. 55, 813–822 (2017).

    Article  CAS  Google Scholar 

  31. US Food and Drug Administration. FDA permits marketing for new test to improve diagnosis of Alzheimer’s disease. https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-new-test-improve-diagnosis-alzheimers-disease (2022).

  32. Li, Y. et al. Validation of plasma amyloid-β 42/40 for detecting Alzheimer disease amyloid plaques. Neurology 98, e688–e699 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aschenbrenner, A. J. et al. Comparison of plasma and CSF biomarkers in predicting cognitive decline. Ann. Clin. Transl. Neurol. 9, 1739–1751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wesseling, H. et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183, 1699–1713 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barthélemy, N. R. et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat. Med. 26, 398–407 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Suárez-Calvet, M. et al. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Aβ pathology are detected. EMBO Mol. Med. 12, e12921 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chhatwal, J. P. et al. Plasma N-terminal tau fragment levels predict future cognitive decline and neurodegeneration in healthy elderly individuals. Nat. Commun. 11, 6024 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sato, C. et al. Tau kinetics in neurons and the human central nervous system. Neuron 97, 1284–1298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barthélemy, N. R., Horie, K., Sato, C. & Bateman, R. J. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J. Exp. Med. 217, e20200861 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Janelidze, S. et al. Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer’s disease. Brain 146, 1592–1601 (2022).

    Article  PubMed Central  Google Scholar 

  41. Aguillon, D. et al. Plasma p-tau217 predicts in vivo brain pathology and cognition in autosomal dominant Alzheimer’s disease. Alzheimers Dement. 19, 2585–2594 (2022).

    Article  PubMed  Google Scholar 

  42. Horie, K., Barthélemy, N. R., Sato, C. & Bateman, R. J. CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain 144, 515–527 (2021).

    Article  PubMed  Google Scholar 

  43. Blennow, K. et al. Cerebrospinal fluid tau fragment correlates with tau PET: a candidate biomarker for tangle pathology. Brain 143, 650–660 (2019).

    Article  PubMed Central  Google Scholar 

  44. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simrén, J. et al. CSF tau368/total-tau ratio reflects cognitive performance and neocortical tau better compared to p-tau181 and p-tau217 in cognitively impaired individuals. Alzheimer’s Res. Ther. 14, 192 (2022).

    Article  Google Scholar 

  46. Fischer, I. & Baas, P. W. Resurrecting the mysteries of big tau. Trends Neurosci. 43, 493–504 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gonzalez-Ortiz, F. et al. Brain-derived tau: a novel blood-based biomarker for Alzheimer’s disease-type neurodegeneration. Brain 146, 1162–1165 (2022).

    Google Scholar 

  48. Chatterjee, P. et al. Plasma glial fibrillary acidic protein in autosomal dominant Alzheimer’s disease: associations with Aβ-PET, neurodegeneration, and cognition. Alzheimers Dement. https://doi.org/10.1002/alz.12879 (2022).

  49. Pereira, J. B. et al. Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease. Brain 144, 3505–3516 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Biel, D. et al. sTREM2 is associated with amyloid-related p-tau increases and glucose hypermetabolism in Alzheimer’s disease. EMBO Mol. Med. 15, e16987 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cao, M. et al. ABI3 is a novel early biomarker of Alzheimer’s disease. J. Alzheimer’s Dis. 87, 335–344 (2022).

    Article  CAS  Google Scholar 

  52. Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Piehl, N. et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 185, 5028–5039 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Halbgebauer, S. et al. CSF levels of SNAP-25 are increased early in Creutzfeldt-Jakob and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 93, 1059–1065 (2022).

    Article  Google Scholar 

  55. Galasko, D. et al. Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer’s disease. Alzheimer’s Dement. 5, 871–882 (2019).

    Article  Google Scholar 

  56. Bacioglu, M. et al. Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron 91, 494–496 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Kaeser, S. A. et al. A neuronal blood marker is associated with mortality in old age. Nat. Aging 1, 218–225 (2021).

    Article  PubMed  Google Scholar 

  58. Ashton, N. J. et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat. Commun. 12, 3400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gianattasio, K. Z. et al. Generalizability of findings from a clinical sample to a community-based sample: a comparison of ADNI and ARIC. Alzheimers Dement. 17, 1265–1276 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mielke, M. M. et al. Performance of plasma phosphorylated tau 181 and 217 in the community. Nat. Med. 28, 1398–1405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wisch, J. K. et al. Proteomic clusters underlie heterogeneity in preclinical Alzheimer’s disease progression. Brain 146, 2944–2956 (2022).

    Article  Google Scholar 

  62. Yang, C. et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat. Neurosci. 24, 1302–1312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Budd Haeberlein, S. et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J. Prev. Alzheimers Dis. 9, 197–210 (2022).

    CAS  PubMed  Google Scholar 

  65. Egan, M. F. et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 378, 1691–1703 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 369, 341–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Vassar, R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimer’s Res. Ther. 6, 89 (2014).

    Article  Google Scholar 

  68. Hur, J.-Y. γ-Secretase in Alzheimer’s disease. Exp. Mol. Med 54, 433–446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 311–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Ostrowitzki, S. et al. Evaluating the safety and efficacy of crenezumab vs placebo in adults with early Alzheimer disease: two phase 3 randomized placebo-controlled trials. JAMA Neurol. 79, 1113–1121 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Reish, N. J. et al. Multiple cerebral hemorrhages in a patient receiving lecanemab and treated with t-PA for stroke. N. Engl. J. Med. 388, 478–479 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Filippi, M. et al. Amyloid-related imaging abnormalities and β-amyloid–targeting antibodies: a systematic review. JAMA Neurol. 79, 291–304 (2022).

    Article  PubMed  Google Scholar 

  73. Reyderman, L. et al. Modeled impact of APOE4 genotype on ARIA-E incidence in patients treated with lecanemab. Alzheimer’s Dement. 18, e069402 (2022).

    Article  Google Scholar 

  74. Antolini, L. et al. Spontaneous ARIA-like events in cerebral amyloid angiopathy–related Inflammation: a multicenter prospective longitudinal cohort study. Neurology 97, e1809–e1822 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xiong, M. et al. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Sci. Transl. Med. 13, eabd7522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Salloway, S. et al. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat. Med. 27, 1187–1196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rafii, M. S. et al. The AHEAD 3-45 study: design of a prevention trial for Alzheimer’s disease. Alzheimer’s Dement. 19, 1227–1233 (2023).

    Article  CAS  Google Scholar 

  78. Joseph-Mathurin, N. et al. Amyloid-related imaging abnormalities in the DIAN-TU-001 trial of gantenerumab and solanezumab: lessons from a trial in dominantly inherited Alzheimer disease. Ann. Neurol. 92, 729–744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. US Food and Drug Administration. FDA converts novel Alzheimer’s disease treatment to traditional approval. https://www.fda.gov/news-events/press-announcements/fda-converts-novel-alzheimers-disease-treatment-traditional-approval (2023).

  80. Rafii, M. S. et al. Safety, tolerability, and immunogenicity of the ACI-24 vaccine in adults with Down syndrome: a phase 1b randomized clinical trial. JAMA Neurol. 79, 565–574 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rynearson, K. D. et al. Preclinical validation of a potent γ-secretase modulator for Alzheimer’s disease prevention. J. Exp. Med. 218, e20202560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Duong, M. T. et al. Dissociation of tau pathology and neuronal hypometabolism within the ATN framework of Alzheimer’s disease. Nat. Commun. 13, 1495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Imbimbo, B. P., Ippati, S., Watling, M. & Balducci, C. A critical appraisal of tau-targeting therapies for primary and secondary tauopathies. Alzheimer’s Dement. 18, 1008–1037 (2022).

    Article  CAS  Google Scholar 

  84. Teng, E. et al. Safety and efficacy of semorinemab in individuals with prodromal to mild Alzheimer disease: a randomized clinical trial. JAMA Neurol. 79, 758–767 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Florian, H. et al. Tilavonemab in early Alzheimer’s disease: results from a phase 2, randomized, double-blind study. Brain 146, 2275–2284 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Meisl, G. et al. In vivo rate-determining steps of tau seed accumulation in Alzheimer’s disease. Sci. Adv. 7, eabh1448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bateman, R. J. et al. The DIAN-TU next generation Alzheimer’s prevention trial: adaptive design and disease progression model. Alzheimer’s Dement. 13, 8–19 (2017).

    Article  Google Scholar 

  88. DeVos, S. L. et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 9, eaag0481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mummery, C. J. et al. Tau-targeting antisense oligonucleotide MAPTRx in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nat. Med. 29, 1437–1447 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Biogen. New data presented at AD/PD 2023 show Biogen’s BIIB080 (MAPT ASO) substantially reduced tau protein levels in patients with early-stage Alzheimer’s disease. https://investors.biogen.com/news-releases/news-release-details/new-data-presented-adpdtm-2023-show-biogens-biib080-mapt-aso (2023).

  91. Cummings, J. et al. Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement. 8, e12295 (2022).

    Article  Google Scholar 

  92. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zeng, H. et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer’s disease. Nat. Neurosci. https://doi.org/10.1038/s41593-022-01251-x (2023).

  94. Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, S. et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J. Exp. Med. 217, e20200785 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Leyns, C. E. G. et al. TREM2 function impedes tau seeding in neuritic plaques. Nat. Neurosci. 22, 1217–1222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gratuze, M. et al. Impact of TREM2R47H variant on tau pathology-induced gliosis and neurodegeneration. J. Clin. Invest. 130, 4954–4968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Leyns, C. E. G. et al. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc. Natl Acad. Sci. USA 114, 11524–11529 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hou, J., Chen, Y., Grajales-Reyes, G. & Colonna, M. TREM2 dependent and independent functions of microglia in Alzheimer’s disease. Mol. Neurodegener. 17, 84 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jain, N., Lewis, C. A., Ulrich, J. D. & Holtzman, D. M. Chronic TREM2 activation exacerbates Aβ-associated tau seeding and spreading. J. Exp. Med. 220, e20220654 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Romero-Molina, C., Garretti, F., Andrews, S. J., Marcora, E. & Goate, A. M. Microglial efferocytosis: diving into the Alzheimer’s disease gene pool. Neuron 110, 3513–3533 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Morioka, S. et al. Chimeric efferocytic receptors improve apoptotic cell clearance and alleviate inflammation. Cell 185, 4887–4903 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Gratuze, M. et al. TREM2-independent microgliosis promotes tau-mediated neurodegeneration in the presence of ApoE4. Neuron 111, 202–219 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. McAlpine, C. S. et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature 595, 701–706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, C. et al. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron 109, 1657–1674 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Koutsodendris, N. et al. Neuronal APOE4 removal protects against tau-mediated gliosis, neurodegeneration and myelin deficits. Nat. Aging 3, 275–296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Litvinchuk, A. et al. Apolipoprotein E4 reduction with antisense oligonucleotides decreases neurodegeneration in a tauopathy model. Ann. Neurol. 89, 952–966 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huynh, T. -P. V. et al. Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron 96, 1013–1023 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Da Mesquita, S. et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature 593, 255–260 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. De Schepper, S. et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease. Nat. Neurosci. 26, 406–415 (2023).

    PubMed  PubMed Central  Google Scholar 

  111. Drieu, A. et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611, 585–593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Chandra, S., Sisodia, S. S. & Vassar, R. J. The gut microbiome in Alzheimer’s disease: what we know and what remains to be explored. Mol. Neurodegener. 18, 9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Minter, M. R. et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease. Sci. Rep. 7, 10411 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Harach, T. et al. Reduction of Aβ amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep. 7, 41802 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Seo, D. et al. ApoE isoform– and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science 379, eadd1236 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Cannistraro, R. J. et al. CNS small vessel disease: a clinical review. Neurology 92, 1146–1156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wagner, J. et al. Medin co-aggregates with vascular amyloid-β in Alzheimer’s disease. Nature 612, 123–131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ryu, J. K. et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat. Immunol. 19, 1212–1223 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Verma, N. et al. Aβ efflux impairment and inflammation linked to cerebrovascular accumulation of amyloid-forming amylin secreted from pancreas. Commun. Biol. 6, 2 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Meneses, A. et al. TDP-43 pathology in Alzheimer’s disease. Mol. Neurodegener. 16, 84 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schweighauser, M. et al. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature 605, 310–314 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bargar, C. et al. Streamlined alpha-synuclein RT-QuIC assay for various biospecimens in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol. Commun. 9, 62 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Irwin, K. E. et al. A fluid biomarker reveals loss of TDP-43 splicing repression in pre-symptomatic ALS. Preprint at https://doi.org/10.1101/2023.01.23.525202 (2023).

  125. Murdock, M. H. & Tsai, L.-H. Insights into Alzheimer’s disease from single-cell genomic approaches. Nat. Neurosci. 26, 181–195 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Small, S. A. & Petsko, G. A. Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat. Rev. Neurosci. 16, 126–132 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Morabito, S. et al. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat. Genet. 53, 1143–1155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Anderson, A. G. et al. Single nucleus multiomics identifies ZEB1 and MAFB as candidate regulators of Alzheimer’s disease-specific cis-regulatory elements. Cell Genom. 3, 100263 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Blanchard, J. W. et al. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature 611, 769–779 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. van Arendonk, J. et al. Diabetes and hypertension are related to amyloid-beta burden in the population-based Rotterdam Study. Brain 146, 337–348 (2023).

    Article  PubMed  Google Scholar 

  131. De Miguel, Z. et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 600, 494–499 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang, C. & Holtzman, D. M. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology 45, 104–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. ALZFORUM. Gantenerumab mystery: how did it lose potency in phase 3? https://www.alzforum.org/news/conference-coverage/gantenerumab-mystery-how-did-it-lose-potency-phase-3

  135. Spangenberg, E. et al. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat. Commun. 10, 3758 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kiani Shabestari, S. et al. Absence of microglia promotes diverse pathologies and early lethality in Alzheimer’s disease mice. Cell Rep. 39, 110961 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Sosna, J. et al. Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol. Neurodegener. 13, 11 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yuan, P. et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90, 724–739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, Y. et al. TREM2 lipid sensing sustains microglia response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gratuze, M. et al. Activated microglia mitigate Aβ-associated tau seeding and spreading. J. Exp. Med. 218, e20210542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shi, Y. et al. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J. Exp. Med. 216, 2546–2561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mancuso, R. et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain 142, 3243–3264 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Rogers, J., Luber-Narod, J., Styren, S. D. & Civin, W. H. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging 9, 339–349 (1988).

    Article  CAS  PubMed  Google Scholar 

  144. Merlini, M. et al. Extravascular CD3+ T cells in brains of Alzheimer disease patients correlate with tau but not with amyloid pathology: an immunohistochemical study. Neurodegener. Dis. 18, 49–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    Article  CAS  PubMed  Google Scholar 

  146. Rogaev, E. I. et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  PubMed  Google Scholar 

  147. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973–977 (1995).

    Article  CAS  PubMed  Google Scholar 

  148. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  149. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 2, 864–870 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Nilsberth, C. et al. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat. Neurosci. 4, 887–893 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Boerwinkle, A. H. et al. Comparison of amyloid burden in individuals with Down syndrome versus autosomal dominant Alzheimer’s disease: a cross-sectional study. Lancet Neurol. 22, 55–65 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Jonsson, T. et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Mawuenyega, K. G. et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330, 1774–1774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Castellano, J. M. et al. Human apoE Isoforms differentially regulate brain Amyloid-β peptide clearance. Sci. Transl. Med. 3, 89ra57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jansen, W. J. et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. J. Am. Med. Assoc. 313, 1924–1938 (2015).

    Article  Google Scholar 

  156. Radde, R. et al. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7, 940–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Saito, T. et al. Single App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Xia, D. et al. Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia. Mol. Neurodegener. 17, 41 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Musiek, E. S., McDade, E. & Holtzman, D. M. Lecanamab ushers in a new era of anti-amyloid therapy for Alzheimer’s disease. Ann. Neurol. 93, 877–880 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Franke for assistance with the generation of figures. We acknowledge support from US National Institute of Health grants RF1NS090934, RF1AG047644 and U19AG069701, the JPB Foundation, the Cure Alzheimer’s Fund and the Rainwater Charitable Foundation (all to D.M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Holtzman.

Ethics declarations

Competing interests

W.K.S. declares no competing interests. D.M.H. cofounded and is on the scientific advisory board of C2N Diagnostics. D.M.H. is on the scientific advisory board of Denali, Cajal Neuroscience and Genentech and consults for Asteroid Therapeutics. D.M.H. is an inventor on a patent on APOE antibodies that was licensed by Washington University to NextCure.

Peer review

Peer review information

Nature Medicine thanks Niklas Mattsson-Carlgren, Dennis Selkoe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Self, W.K., Holtzman, D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat Med 29, 2187–2199 (2023). https://doi.org/10.1038/s41591-023-02505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-023-02505-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing