Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue

Abstract

Spinal muscular atrophy type 1 (SMA1) is a debilitating neurodegenerative disease resulting from survival motor neuron 1 gene (SMN1) deletion/mutation. Onasemnogene abeparvovec (formerly AVXS-101) is a gene therapy that restores SMN production via one-time systemic administration. The present study demonstrates widespread biodistribution of vector genomes and transgenes throughout the central nervous system (CNS) and peripheral organs, after intravenous administration of an AAV9-mediated gene therapy. Two symptomatic infants with SMA1 enrolled in phase III studies received onasemnogene abeparvovec. Both patients died of respiratory complications unrelated to onasemnogene abeparvovec. One patient had improved motor function and the other died shortly after administration before appreciable clinical benefit could be observed. In both patients, onasemnogene abeparvovec DNA and messenger RNA distribution were widespread among peripheral organs and in the CNS. The greatest concentration of vector genomes was detected in the liver, with an increase over that detected in CNS tissues of 300–1,000-fold. SMN protein, which was low in an untreated SMA1 control, was clearly detectable in motor neurons, brain, skeletal muscle and multiple peripheral organs in treated patients. These data support the fact that onasemnogene abeparvovec has effective distribution, transduction and expression throughout the CNS after intravenous administration and restores SMN expression in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Onasemnogene abeparvovec vector genome biodistribution.
Fig. 2: Onasemnogene abeparvovec mRNA transcript biodistribution in patient 1.
Fig. 3: SMN protein expression in the spinal cord.
Fig. 4: SMN detection in the motor cortex and brainstem by immunohistochemistry.
Fig. 5: SMN detection in other areas of the brain by immunohistochemistry.
Fig. 6: SMN protein detection in peripheral tissues.

Similar content being viewed by others

Data availability

Novartis is committed to sharing clinical trial data with external researchers and has been doing so voluntarily since 2014. Novartis was the third member to join ClinicalStudyDataRequest.com (CSDR), which is the first data sharing consortium of clinical study sponsors and funders. CSDR is a leader in the data sharing community inspired to drive scientific innovation and improve medical care by facilitating access to patient-level data from clinical studies. More information is available at https://www.novartisclinicaltrials.com/TrialConnectWeb/voluntarydataviewmore.nov. Due to patient consent issues, there are additional conditions for data access: (1) Participants in Novartis-sponsored trials gave their consent for the use of their data in the context of a particular trial. The external research request must therefore intend to study the medicine or disease that was intended in the original study. (2) Access to data is determined by the Independent Review Panel based on the scientific merit of the research proposal. In exceptional circumstances, access to data may be declined by the sponsor, for example, when there is a potential conflict of interest or an actual or potential competitive risk. The Independent Review Panel is coordinated by the Welcome Trust.

References

  1. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 13, 155–165 (1995).

    Article  Google Scholar 

  2. Burghes, A. H. M. & McGovern, V. L. in Molecular and Cellular Therapies for Motor Neuron Diseases (eds. Boulis, N. M. et al.) 121–139 (Elsevier, 2017).

  3. Kolb, S. J. & Kissel, J. T. Spinal muscular atrophy. Neurol. Clin. 33, 831–846 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Monani, U. R. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8, 1177–1183 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Lorson, C. L., Hahnen, E., Androphy, E. J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl Acad. Sci. USA 96, 6307–6311 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cartegni, L. & Krainer, A. R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30, 377–384 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Lorson, C. L. et al. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat. Genet. 19, 63–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Burnett, B. G. et al. Regulation of SMN protein stability. Mol. Cell. Biol. 29, 1107–1115 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Lefebvre, S. et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 16, 265–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Coovert, D. D. et al. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 6, 1205–1214 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Feldkötter, M., Schwarzer, V., Wirth, R., Wienker, T. F. & Wirth, B. Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet. 70, 358–368 (2002).

    Article  PubMed  Google Scholar 

  12. Mailman, M. D. et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet. Med. 4, 20–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Roberts, D. F., Chavez, J. & Court, S. D. The genetic component in child mortality. Arch. Dis. Child. 45, 33–38 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D’Amico, A., Mercuri, E., Tiziano, F. D. & Bertini, E. Spinal muscular atrophy. Orphanet J. Rare Dis. 6, 71 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Finkel, R. S. et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 83, 810–817 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Finkel, R. S. Electrophysiological and motor function scale association in a pre-symptomatic infant with spinal muscular atrophy type I. Neuromuscul. Disord. 23, 112–115 (2013).

    Article  PubMed  Google Scholar 

  17. Crawford, T. O. & Pardo, C. A. The neurobiology of childhood spinal muscular atrophy. Neurobiol. Dis. 3, 97–110 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Swoboda, K. J. et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann. Neurol. 57, 704–712 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lutz, C. M. et al. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J. Clin. Invest. 121, 3029–3041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Le, T. T. et al. Temporal requirement for high SMN expression in SMA mice. Hum. Mol. Genet. 20, 3578–3591 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duque, S. I. et al. A large animal model of spinal muscular atrophy and correction of phenotype. Ann. Neurol. 77, 399–414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farrar, M. A. et al. Emerging therapies and challenges in spinal muscular atrophy. Ann. Neurol. 81, 355–368 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wood, M. J. A., Bowerman, M. & Talbot, K. Spinal muscular atrophy: antisense oligonucleotide therapy opens the door to an integrated therapeutic landscape. Hum. Mol. Genet. 26, R151–R159 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Duque, S. et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol. Ther. 17, 1187–1196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lykken, E. A., Shyng, C., Edwards, R. J., Rozenberg, A. & Gray, S. J. Recent progress and considerations for AAV gene therapies targeting the central nervous system. J. Neurodev. Disord. 10, 16 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hudry, E. & Vandenberghe, L. H. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 101, 839–862 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Bevan, A. K. et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol. Ther. 19, 1971–1980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, L. et al. CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice. Hum. Gene Ther. 12, 563–573 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Z. et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene. Ther. 10, 2105–2111 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Hinderer, C. et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Gene Ther. 29, 285–298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Van Alstyne, M. et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat. Neurosci. https://doi.org/10.1038/s41593-021-00827-3 (2021).

  33. Day, J. W. et al. Clinical trial and postmarketing safety of onasemnogene abeparvovec therapy. Drug Saf. https://doi.org/10.1007/s40264-021-01107-6 (2021).

  34. Al-Zaidy, S. A. et al. AVXS-101 (onasemnogene abeparvovec) for SMA1: comparative study with a prospective natural history cohort. J. Neuromuscul. Dis. 6, 307–317 (2019).

    Article  PubMed  Google Scholar 

  35. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Mendell, J., et al. Five-year extension results of the Phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. 78, 834–841 (2021).

    Article  PubMed  Google Scholar 

  37. Day, J. W. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy with two copies of SMN2 (STR1VE): an open-label, single-arm, phase 3 study. Lancet Neurol. 20, 284–293 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Strauss, K. et al. Onasemnogene abeparvovec gene therapy in presymptomatic spinal muscular atrophy (SMA): SPR1NT study update in children with 2 copies of SMN2. Neurology 96, S15 (2021).

    Google Scholar 

  39. Mercuri, E. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 20, 838–841 (2021).

    Article  Google Scholar 

  40. Zincarelli, C., Soltys, S., Rengo, G. & Rabinowitz, J. E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16, 1073–1080 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Blatnik, A. J. III et al. Conditional deletion of SMN in cell culture identifies functional SMN alleles. Hum. Mol. Genet. 29, 3477–3492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sheng, L., et al. Comparison of the efficacy of MOE and PMO modifications of systemic antisense oligonucleotides in a severe SMA mouse model. Nucleic Acids Res. 48, 2853–2865 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buchlis, G. et al. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood 119, 3038–3041 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bartus, R. T. et al. Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with alpha-synucleinopathies. Neurobiol. Dis. 78, 162–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Castle, M. J. et al. Postmortem analysis in a clinical trial of AAV2-NGF gene therapy for Alzheimer’s disease identifies a need for improved vector delivery. Hum. Gene. Ther. 31, 415–422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meyer, K. et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol. Ther. 23, 477–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Kolb, S. J. et al. Natural history of infantile-onset spinal muscular atrophy. Ann. Neurol. 82, 883–891 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rindt, H. et al. Astrocytes influence the severity of spinal muscular atrophy. Hum. Mol. Genet. 15, 4094–4102 (2015).

    Article  CAS  Google Scholar 

  49. Vukojicic, A. et al. The classical complement pathway mediates microglia-dependent remodeling of spinal motor circuits during development and in SMA. Cell. Rep. 3, 3087–3100 (2019).

    Article  CAS  Google Scholar 

  50. Bevan, A. K. et al. Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Hum. Mol. Genet. 19, 3895–3905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shababi, M. et al. Cardiac defects contribute to the pathology of spinal muscular atrophy models. Hum. Mol. Genet. 19, 4059–4071 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Heier, C. R., Satta, R., Lutz, C. & DiDonato, C. J. Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice. Hum. Mol. Genet. 19, 3906–3918 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iascone, D. M., Henderson, C. E. & Lee, J. C. Spinal muscular atrophy: from tissue specificity to therapeutic strategies. F1000Prime Rep. 7, 4 (2015).

    Article  CAS  Google Scholar 

  54. Wijngaarde, C. A. et al. Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet. J. Rare Dis. 12, 67 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prior, T. W. et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am. J. Hum. Genet. 85, 408–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bernal, S. et al. The c.859G>C variant in the SMN2 gene is associated with types II and III SMA and originates from a common ancestor. J. Med. Genet. 47, 640–642 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Oskoui, M., Darras, B.T., and De Vivo, D.C. in Spinal Muscular Atrophy (eds. Sumner, C. J. et al.) 3–19 (Academic Press, 2017).

  58. Chand, D. et al. Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J. Hepatol. 74, 560–566 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Feldman, A. G. et al. Subacute liver failure following gene replacement therapy for spinal muscular atrophy type I. J. Pediatr. 225, 252–258 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank and are indebted to the families and patients for making this research possible. Writing and editorial support for the original manuscript was provided by Cadent Medical Communications (New York, NY, USA). Funding was provided by Novartis Gene Therapies, Inc.

Author information

Authors and Affiliations

Authors

Contributions

G.T., A.H.M.B., C.H., J.D., B.T.T.C., S.P., B.B., W.K.C., V.L.M., R.F.H., M.C. and C.R.P. performed the experiments. G.T., A.H.M.B., P.K., D.M.S., D.E.F., W.K.C., V.L.M., M.S., F.M., J.R.M. and K.D.F. analyzed the results. K.D.F. supervised the studies.

Corresponding author

Correspondence to Arthur H. M. Burghes.

Ethics declarations

Competing interests

J.D., S.P. and B.T.T.C. are employees of Novartis Gene Therapies, Inc. and hold shares in Novartis. B.B., G.T., C.H., D.M.S., D.E.F., P.K. and K.D.F. are former employees of Novartis Gene Therapies, Inc. W.K.C. received honoraria for participation in a scientific advisory board for Regeneron Genetics Center and received grant support from Biogen for a newborn screening study outside of this study. A.H.M.B. is a consultant for Novartis Gene Therapies, Inc., for this study and other work, and conducted research for Exicure, Inc., outside of this study. V.L.M., C.R.P., and M.C. have nothing to disclose. R.F.H. was a consultant for Cunningham Meyer & Vedrine, PC, and Phillips Parker Orbeson & Arnett, PLC, outside of this study. J.R.M. is a consultant for Novartis Gene Therapies, Inc., for this study and other work, and receives honoraria for participation in scientific advisory boards from Novartis Gene Therapies, Inc., for this study and other work. M.S. reports honoraria for participation in scientific advisory boards from Novartis Gene Therapies, Inc., for this study and other work, Biogen and Roche, and for scientific presentation in Biogen-sponsored symposia outside of this study. F.M. reports a grant from Biogen for newborn screening and for registries outside of this study. F.M. also reports honoraria for participation in scientific advisory boards from Novartis Gene Therapies, Inc., for this study and other work, Biogen and Roche, and for scientific presentation at their industry-sponsored symposia outside of this study. Novartis Gene Therapies, Inc., sponsored the STR1VE-US (NCT03306277) and STR1VE-EU studies (NCT03461289).

Additional information

Peer review information Nature Medicine thanks Paola Leone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Jerome Staal was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–4 and reference.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomsen, G., Burghes, A.H.M., Hsieh, C. et al. Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue. Nat Med 27, 1701–1711 (2021). https://doi.org/10.1038/s41591-021-01483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-021-01483-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing