DIGITAL HEALTH

Diagnosing bias in data-driven algorithms for healthcare

A recent analysis highlighting the potential for algorithms to perpetuate existing racial biases in healthcare underscores the importance of thinking carefully about the labels used during algorithm development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Nemati, S. et al. Crit. Care Med. 46, 547–553 (2018).

    Article  Google Scholar 

  2. 2.

    Caruana, R. et al. in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1721–1730 (ACM, 2015).

  3. 3.

    Bayati, M. et al. PLoS One 9, e109264 (2014).

    Article  Google Scholar 

  4. 4.

    Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Science 366, 447–453 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Schoenman, J. A. & Chockley, N. Understanding US health care spending. NICHM Foundation Data Brief (2011).

  6. 6.

    National Academy of Medicine. Effective care for high-need patients. https://nam.edu/HighNeeds/highNeedPatients.html (2017).

  7. 7.

    Benjamin, R. People’s Science: Bodies and Rights on the Stem Cell Frontier (Stanford University Press, 2013).

  8. 8.

    Oh, J. et al. Infect. Control Hosp. Epidemiol. 39, 425–433 (2018).

    Article  Google Scholar 

  9. 9.

    Liu, V. X. et al. Am. J. Respir. Crit. Care Med. 196, 856–863 (2017).

    Article  Google Scholar 

  10. 10.

    Silver, D. et al. Nature 550, 354–359 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C. & Faisal, A. A. Nat. Med. 24, 1716–1720 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Schulam, P. & Saria, S. in Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) 1697–1708 (Curran Associates, 2017).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jenna Wiens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wiens, J., Price, W.N. & Sjoding, M.W. Diagnosing bias in data-driven algorithms for healthcare. Nat Med 26, 25–26 (2020). https://doi.org/10.1038/s41591-019-0726-6

Download citation