Individualized sepsis treatment using reinforcement learning

Reinforcement learning is applied to two large databases of electronic health records for patients admitted to an intensive care unit to identify individualized treatment strategies for correcting hypotension in sepsis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Komorowski et al. use RL to develop and validate a best-practice algorithm for vasopressor versus fluid dosing.


  1. 1.

    Self, W. H. et al. Ann. Emerg. Med. 72, 457–466 (2018).

    Article  Google Scholar 

  2. 2.

    Jaehne, A. K. & Rivers, E. P. Crit. Care Med. 44, 2263–2269 (2016).

    Article  Google Scholar 

  3. 3.

    Malbrain, M. L. N. G. et al. Ann. Intensive Care 8, 66 (2018).

    Article  Google Scholar 

  4. 4.

    Bai, X. et al. Crit. Care 18, 532 (2014).

    Article  Google Scholar 

  5. 5.

    Marik, P. & Bellomo, R. Br. J. Anaesth. 116, 339–349 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Komorowski, M., Celi, L. A., Badawi, O. & Gordon, A. C. Nat. Med. (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Sutton, R. S. & Barto, A. G. Introduction to Reinforcement Learning 135 (MIT Press, Cambridge, MA, USA, 1998).

    Google Scholar 

  8. 8.

    Xu, Y., Xu, Y. & Saria, S. A Bayesian Nonparametric Approach for Estimating Individualized Treatment-Response Curves. in Machine Learning for Healthcare Conference 282–300 (2016).

  9. 9.

    Prasad, N. et al. A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. Preprint at (2017).

  10. 10.

    Nemati, S., Ghassemi, M. M. & Clifford, G. D., 2016, August. Optimal Medication Dosing from Suboptimal Clinical Examples: A Deep Reinforcement Learning Approach. in 2016 IEEE 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2978–2981 (2016).

  11. 11.

    Schulam, P. & Saria, S. Discretizing logged interaction data biases learning for decision-making. Preprint at (2018).

Download references

Author information



Corresponding author

Correspondence to Suchi Saria.

Ethics declarations

Competing interests

S.S. has received research support from the American Heart Association (Dallas) and an honorarium from AbbVie (Chicago) and has an ownership interest in Patient Ping (Boston) and Bayesian Health (Baltimore).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saria, S. Individualized sepsis treatment using reinforcement learning. Nat Med 24, 1641–1642 (2018).

Download citation

Further reading