The major genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is a C9orf72 G4C2 repeat expansion1,2. Proposed mechanisms by which the expansion causes c9FTD/ALS include toxicity from repeat-containing RNA and from dipeptide repeat proteins translated from these transcripts. To investigate the contribution of poly(GR) dipeptide repeat proteins to c9FTD/ALS pathogenesis in a mammalian in vivo model, we generated mice that expressed GFP–(GR)100 in the brain. GFP–(GR)100 mice developed age-dependent neurodegeneration, brain atrophy, and motor and memory deficits through the accumulation of diffuse, cytoplasmic poly(GR). Poly(GR) co-localized with ribosomal subunits and the translation initiation factor eIF3η in GFP–(GR)100 mice and, of importance, in c9FTD/ALS patients. Combined with the differential expression of ribosome-associated genes in GFP–(GR)100 mice, these findings demonstrate poly(GR)-mediated ribosomal distress. Indeed, poly(GR) inhibited canonical and non-canonical protein translation in HEK293T cells, and also induced the formation of stress granules and delayed their disassembly. These data suggest that poly(GR) contributes to c9FTD/ALS by impairing protein translation and stress granule dynamics, consequently causing chronic cellular stress and preventing cells from mounting an effective stress response. Decreasing poly(GR) and/or interrupting interactions between poly(GR) and ribosomal and stress granule-associated proteins may thus represent potential therapeutic strategies to restore homeostasis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

  2. 2.

    Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

  3. 3.

    Gendron, T. F., Belzil, V. V., Zhang, Y. J. & Petrucelli, L. Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathol. 127, 359–376 (2014).

  4. 4.

    Zhang, K. et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61 (2015).

  5. 5.

    Donnelly, C. J. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).

  6. 6.

    Cooper-Knock, J. et al. Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain 137, 2040–2051 (2014).

  7. 7.

    Sareen, D. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5, 208ra149 (2013).

  8. 8.

    Conlon, E. G. et al. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. Elife 5(2016).

  9. 9.

    Lee, Y. B. et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 5, 1178–1186 (2013).

  10. 10.

    Mori, K. et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol. 125, 413–423 (2013).

  11. 11.

    Ash, P. E. et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646 (2013).

  12. 12.

    Gendron, T. F. et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol. 126, 829–844 (2013).

  13. 13.

    Mori, K. et al. Bidirectional transcripts of the expanded C9orf72hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol. 126, 881–893 (2013).

  14. 14.

    Mori, K. et al. The C9orf72GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338 (2013).

  15. 15.

    Zu, T. et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc. Natl Acad. Sci. USA 110, E4968–E4977 (2013).

  16. 16.

    Saberi, S. et al. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathol. 135, 459–474 (2018).

  17. 17.

    Jovicic, A. et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat. Neurosci. 18, 1226–1229 (2015).

  18. 18.

    Kanekura, K. et al. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation. Hum. Mol. Genet. 25, 1803–1813 (2016).

  19. 19.

    Kwon, I. et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345, 1139–1145 (2014).

  20. 20.

    Lee, K. H. et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774–788.e17 (2016).

  21. 21.

    Tao, Z. et al. Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum. Mol. Genet. 24, 2426–2441 (2015).

  22. 22.

    Yamakawa, M. et al. Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Hum. Mol. Genet. 15, 1630–1645 (2014).

  23. 23.

    Lopez-Gonzalez, R. et al. Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron 92, 383–391 (2016).

  24. 24.

    Freibaum, B. D. et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129–133 (2015).

  25. 25.

    Boeynaems, S. et al. Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci. Rep. 6, 20877 (2016).

  26. 26.

    Shi, K. Y. et al. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc. Natl Acad. Sci. USA 114, E1111–E1117 (2017).

  27. 27.

    Chew, J. et al. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 348, 1151–1154 (2015).

  28. 28.

    Yang, D. et al. FTD/ALS-associated poly(GR) protein impairs the Notch pathway and is recruited by poly(GA) into cytoplasmic inclusions. Acta Neuropathol. 130, 525–535 (2015).

  29. 29.

    Schmidt, E. K., Clavarino, G., Ceppi, M. & Pierre, P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat. Methods 6, 275–277 (2009).

  30. 30.

    Landry, D. M., Hertz, M. I. & Thompson, S. R. RPS25 is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs. Genes Dev. 23, 2753–2764 (2009).

  31. 31.

    Hertz, M. I., Landry, D. M., Willis, A. E., Luo, G. & Thompson, S. R. Ribosomal protein S25 dependency reveals a common mechanism for diverse internal ribosome entry sites and ribosome shunting. Mol. Cell. Biol. 33, 1016–1026 (2013).

  32. 32.

    Zhang, Y. J. et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. 19, 668–677 (2016).

  33. 33.

    Mizielinska, S. et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345, 1192–1194 (2014).

  34. 34.

    Lin, Y. et al. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 167, 789–802.e12 (2016).

  35. 35.

    Cheng, W. et al. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2alpha phosphorylation. Nat. Commun. 9, 51 (2018).

  36. 36.

    Green, K. M. et al. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat. Commun. 8, 2005 (2017).

  37. 37.

    Zhang, Y. J. et al. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol. 128, 505–524 (2014).

  38. 38.

    Prudencio, M. et al. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat. Neurosci. 18, 1175–1182 (2015).

  39. 39.

    Kalari, K. R. et al. MAP-RSeq: Mayo Analysis Pipeline for RNA sequencing. BMC Bioinformatics 15, 224 (2014).

  40. 40.

    Hansen, K. D., Irizarry, R. A. & Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13, 204–216 (2012).

  41. 41.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  42. 42.

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

  43. 43.

    Gendron, T. F. et al. Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers. Acta Neuropathol. 130, 559–573 (2015).

  44. 44.

    Kramer, N. J. et al. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. Science 353, 708–712 (2016).

Download references


We are grateful to all patients who agreed to donate post-mortem tissue. This work was supported by the National Institutes of Health/National Institute of Neurological Disorders and Stroke (R35NS097273 (L.P.); P01NS084974 (L.P., D.W.D., R.R. and B.O.); P01NS099114 (T.F.G. and L.P.); R01NS088689 (L.P.); R35NS097263(10) (A.D.G.)); the Mayo Clinic Foundation (L.P.); the Amyotrophic Lateral Sclerosis Association (T.F.G., L.P., Y.-J.Z. and M.P.), the Robert Packard Center for ALS Research at Johns Hopkins (A.D.G. and L.P.) and the Target ALS Foundation (T.F.G., A.D.G., L.P. and Y.-J.Z.). We would like to thank J. N. Stankowski, E. A. Perkerson, L. Rousseau and V. Phillips for technical support. This manuscript is dedicated to Dr Antimo D’Aniello.

Author information


  1. Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA

    • Yong-Jie Zhang
    • , Tania F. Gendron
    • , Mark T. W. Ebbert
    • , Aliesha D. O’Raw
    • , Mei Yue
    • , Karen Jansen-West
    • , Mercedes Prudencio
    • , Jeannie Chew
    • , Casey N. Cook
    • , Lillian M. Daughrity
    • , Jimei Tong
    • , Yuping Song
    • , Sarah R. Pickles
    • , Monica Castanedes-Casey
    • , Aishe Kurti
    • , Rosa Rademakers
    • , Dennis W. Dickson
    • , John D. Fryer
    •  & Leonard Petrucelli
  2. Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA

    • Yong-Jie Zhang
    • , Tania F. Gendron
    • , Mercedes Prudencio
    • , Jeannie Chew
    • , Casey N. Cook
    • , Rosa Rademakers
    • , Dennis W. Dickson
    • , John D. Fryer
    •  & Leonard Petrucelli
  3. Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA

    • Xu Zhang
    •  & Wenqian Hu
  4. Department of Neurology, Mayo Clinic, Jacksonville, FL, USA

    • Bjorn Oskarsson
  5. Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA

    • Aaron D. Gitler


  1. Search for Yong-Jie Zhang in:

  2. Search for Tania F. Gendron in:

  3. Search for Mark T. W. Ebbert in:

  4. Search for Aliesha D. O’Raw in:

  5. Search for Mei Yue in:

  6. Search for Karen Jansen-West in:

  7. Search for Xu Zhang in:

  8. Search for Mercedes Prudencio in:

  9. Search for Jeannie Chew in:

  10. Search for Casey N. Cook in:

  11. Search for Lillian M. Daughrity in:

  12. Search for Jimei Tong in:

  13. Search for Yuping Song in:

  14. Search for Sarah R. Pickles in:

  15. Search for Monica Castanedes-Casey in:

  16. Search for Aishe Kurti in:

  17. Search for Rosa Rademakers in:

  18. Search for Bjorn Oskarsson in:

  19. Search for Dennis W. Dickson in:

  20. Search for Wenqian Hu in:

  21. Search for Aaron D. Gitler in:

  22. Search for John D. Fryer in:

  23. Search for Leonard Petrucelli in:


L.P. and Y.-J.Z. contributed to the conception and design. Y.-J.Z. performed cell culture and treatments, preparation of lysates, western blot, RT-PCR, qPCR, immunofluorescence staining, SUnSET assay and FISH; T.F.G. and L.M.D. generated and/or performed poly(GP) and poly(GR) immunoassays; M.T.W.E. and J.D.F. analysed RNA-Seq data; A.D.O. performed intracerebroventricular injection, behavioural tests, and immunofluorescence staining and quantification of neuropathology and TIA-1-positive stress granules; M.Y. performed the quantification of neuropathology and RNA foci, and in vivo SUnSET assay; M.P. and Y.S. ran the RNA 6000 Nano kit to verify RNA integrity; W.H. and X.Z. contributed to the ribosome study; K.J.-W. made plasmids and AAV1 virus; J.C. and M.C.-C. performed immunohistochemistry staining; C.N.C. and S.R.P. performed the SUnSET assay. J.T. collected mouse tissues; A.K. and J.D.F. contributed to behavioural tests; R.R., B.O. and D.W.D. contributed to the tissue collection; A.D.G. assisted with data analysis; L.P., Y.-J.Z. T.F.G. and M.T.W.E. analyzed data and wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Leonard Petrucelli.

Supplementary Information

  1. Supplementary Figures and Tables

    Supplementary Discussion, Supplementary Figures 1–12 and Supplementary Tables 1 and 2

  2. Reporting Summary

  3. Supplementary Dataset

    RAN-seq analysis

About this article

Publication history






Further reading