Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IKAROS and AIOLOS directly regulate AP-1 transcriptional complexes and are essential for NK cell development

Abstract

Ikaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted. Ikzf1-null NK cells presented extensive transcriptional alterations with reduced AP-1 transcriptional complex expression and increased expression of Ikzf2/Helios and Ikzf3/Aiolos. IKZF1 and IKZF3 directly bound AP-1 family members and deletion of both Ikzf1 and Ikzf3 in NK cells resulted in further reductions in Jun/Fos expression and complete loss of peripheral NK cells. Collectively, we show that Ikaros family members are important regulators of apoptosis, cytokine responsiveness and AP-1 transcriptional activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conditional deletion of Ikaros leads to NK lymphopenia.
Fig. 2: Defective NK cell immunity in Ikzf1Δ/Δ mice.
Fig. 3: Impaired IL-15 signaling and survival in the absence of Ikzf1.
Fig. 4: Ikaros directly regulates genes controlling lineage fate, cytokine signaling and apoptosis in NK cells.
Fig. 5: Loss of both Ikaros and Aiolos is incompatible with NK cell development.
Fig. 6: Aiolos and Ikaros target overlapping genes essential for innate lymphopoiesis.
Fig. 7: Ikaros and Aiolos directly activate AP-1 transcription factors.
Fig. 8: Human NK cells require Ikaros family members for optimal function.

Similar content being viewed by others

Data availability

RNA-seq, ChIP–seq, CUT&RUN and ATAC-seq data are publicly available at the Gene Expression Omnibus under accession codes GSE247283, GSE13229, GSE113031 and GSE230035.

References

  1. Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Cerwenka, A. & Lanier, L. L. Natural killer cells, viruses and cancer. Nat. Rev. Immunol. 1, 41–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Huntington, N. D., Cursons, J. & Rautela, J. The cancer–natural killer cell immunity cycle. Nat. Rev. Cancer 20, 437–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Boos, M. D., Yokota, Y., Eberl, G. & Kee, B. L. Mature natural killer cell and lymphoid tissue–inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204, 1119–1130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Delconte, R. B. et al. The helix-loop-helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15. Immunity 44, 103–115 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Gascoyne, D. M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118–1124 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206, 2977–2986 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goh, W. et al. Hhex directly represses BIM-dependent apoptosis to promote NK cell development and maintenance. Cell Rep. 33, 108285 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Viant, C. et al. Cell cycle progression dictates the requirement for BCL2 in natural killer cell survival. J. Exp. Med. 214, 491–510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huntington, N. D. et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat. Immunol. 8, 856–863 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sathe, P. et al. Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nat. Commun. 5, 4539 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Huntington, N. D. The unconventional expression of IL-15 and its role in NK cell homeostasis. Immunol. Cell Biol. 92, 210–213 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Robbins, S. H. et al. Cutting edge: inhibitory functions of the killer cell lectin-like receptor G1 molecule during the activation of mouse NK cells. J. Immunol. 168, 2585–2589 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Delconte, R. B. et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat. Immunol. 17, 816–824 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi, T. et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br. J. Haematol. 128, 192–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  Google Scholar 

  17. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Georgopoulos, K., Winandy, S. & Avitahl, N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu. Rev. Immunol. 15, 155–176 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Schjerven, H. et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat. Immunol. 14, 1073–1083 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Georgopoulos, K., Moore, D. D. & Derfler, B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258, 808–812 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Yoshida, T., Ng, S. Y. -M., Zuniga-Pflucker, J. C. & Georgopoulos, K. Early hematopoietic lineage restrictions directed by Ikaros. Nat. Immunol. 7, 382–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Papathanasiou, P. et al. Self-renewal of the long-term reconstituting subset of hematopoietic stem cells is regulated by Ikaros. Stem Cells 27, 3082–3092 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Schwickert, T. A. et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat. Immunol. 15, 283–293 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, S. et al. Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression. Mol. Cell. Biol. 30, 4149–4158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Avitahl, N. et al. Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity 10, 333–343 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, H. -J. et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science 350, 334–339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holmes, M. L. et al. Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO J. 33, 2721–2734 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun, L., Liu, A. & Georgopoulos, K. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J. 15, 5358–5369 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rautela, J. & Huntington, N. D. IL-15 signaling in NK cell cancer immunotherapy. Curr. Opin. Immunol. 44, 1–6 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Adams, N. M. et al. Transcription factor IRF8 orchestrates the adaptive natural killer cell response. Immunity 48, 1172–1182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beaulieu, A. M., Zawislak, C. L., Nakayama, T. & Sun, J. C. The transcription factor Zbtb32 controls the proliferative burst of virus-specific natural killer cells responding to infection. Nat. Immunol. 15, 546–553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iacobucci, I. et al. IKAROS deletions dictate a unique gene expression signature in patients with adult B-cell acute lymphoblastic leukemia. PLoS ONE 7, e40934 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Javed, A. et al. Ikaros family proteins redundantly regulate temporal patterning in the developing mouse retina. Development 150, dev200436 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, W. S. et al. Suppressor of cytokine signaling 2 negatively regulates NK cell differentiation by inhibiting JAK2 activity. Sci. Rep. 7, 46153 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Delconte, R. B. et al. NK cell priming from endogenous homeostatic signals is modulated by CIS. Front. Immunol. 11, 75 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bernard, P. -L. et al. Targeting CISH enhances natural cytotoxicity receptor signaling and reduces NK cell exhaustion to improve solid tumor immunity. J. Immunother. Cancer 10, e004244 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Putz, E. M. et al. Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. Oncoimmunology 6, e1267892 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Karin, M., Liu, Z. G. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Schnoegl, D., Hiesinger, A., Huntington, N. D. & Gotthardt, D. AP-1 transcription factors in cytotoxic lymphocyte development and antitumor immunity. Curr. Opin. Immunol. 85, 102397 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Delpoux, A. et al. FOXO1 constrains activation and regulates senescence in CD8 T cells. Cell Rep. 34, 108674 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Passegué, E., Jochum, W., Behrens, A., Ricci, R. & Wagner, E. F. JunB can substitute for Jun in mouse development and cell proliferation. Nat. Genet. 30, 158–166 (2002).

    Article  PubMed  Google Scholar 

  43. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Riera-Sans, L. & Behrens, A. Regulation of αβ/γδ T cell development by the activator protein 1 transcription factor c-Jun. J. Immunol. 178, 5690–5700 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Li, P. et al. BATF-JUN is critical for IRF4-mediated transcription in T cells. Nature 490, 543–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ellin, F., Landström, J., Jerkeman, M. & Relander, T. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish Lymphoma Registry. Blood 124, 1570–1577 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Fedele, P. L. et al. Loss of IRF4 results in multiple myeloma cell apoptosis through the transcriptional upregulation of the BH3-only proteins Bmf and BIM. Blood 134, 3103 (2019).

    Article  Google Scholar 

  48. Fedele, P. L. et al. The transcription factor IRF4 represses proapoptotic BMF and BIM to licence multiple myeloma survival. Leukemia 35, 2114–2118 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Fehniger, T. A. et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J. Exp. Med. 193, 219–231 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Narni-Mancinelli, E. et al. Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor. Proc. Natl Acad. Sci. USA 108, 18324–18329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rautela, J., Surgenor, E. & Huntington, N. D. Drug target validation in primary human natural killer cells using CRISPR RNP. J. Leukoc. Biol. 108, 1397–1408 (2020).

  52. Schuster, I. S. et al. TRAIL+ NK cells control CD4+ T cell responses during chronic viral infection to limit autoimmunity. Immunity 41, 646–656 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lun, A. T. L. & Smyth, G. K. csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows. Nucleic Acids Res. 44, e45 (2016).

    Article  PubMed  Google Scholar 

  58. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liang, S. et al. A small molecule inhibitor of PTP1B and PTPN2 enhances T cell anti-tumor immunity. Nat. Commun. 14, 4524 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the N.D.H. laboratory members A. Doan and T. Camilleri for technical assistance and animal husbandry. We extend our gratitude to Monash University platform staff and administration for their services. We are extremely grateful to M. Busslinger (IMP, Austria) for providing the Ikzf1loxP mice, E. Vivier (CIML, France) for providing the Ncr1iCre mice, M. Caligiuri (City of Hope, USA) for providing the Il15Tg and F. Ishikawa (RIKEN, Japan) for providing the human IL-15/IL-7 transgenic NSG mice and D. Lee (Nationwide Children’s Hospital, USA) for the K562-CSTX002 cell line. W.G. was supported by a Melbourne International Research Scholarship. M.F. was supported by an Investigator Fellowship from the Prostate Cancer Foundation (USA). This work is supported by project grants from the NHMRC of Australia (GNT1124784, GNT1066770, GNT1057852, GNT1124907, GNT1057812, GNT1049407, GNT1027472 and GNT1184615 to N.D.H.) and an NHMRC Investigator Fellowship (GNT1195296 to N.D.H.). N.D.H. is a recipient of a Melanoma Research Grant from the Harry J. Lloyd Charitable Trust, Melanoma Research Alliance Young Investigator Award, an Ian Potter Foundation equipment grant, the National Foundation for Medical Research and Innovation (NFMRI) John Dixon Hughes Medal, and a CLIP grant from the Cancer Research Institute. S.L.N. is an NHMRC SPRF Fellow (GNT1155342). M.A.D.-E. is an NHMRC PRF Fellow (GNT1119298). J.R. was supported by a Victorian Cancer Agency grant (ECSG18020).

Author information

Authors and Affiliations

Authors

Contributions

W.G., S.S., H.S., Z.S., A.P., R.H., I.K., R.B.D., C.E.A., I.S.S., P.B., D.T., I.P., M.C., X.M., F.S.-F.-G and J.R. designed and performed experiments. M.F., S.H.-Z. and S.S. provided bioinformatics analysis and input into interpretation of results. N.D.H., S.L.N., M.J.D., J.C., J.R., A.K. and M.A.D.-E. supervised experimental design and provided input into interpretation of results. S.L.N., A.K. and N.D.H. wrote the manuscript with editorial input from all authors.

Corresponding author

Correspondence to Nicholas D. Huntington.

Ethics declarations

Competing interests

N.D.H. and J.R. are founders and shareholders in oNKo-Innate. N.D.H. is an inventor on patents relating to this work. N.D.H. serves on an advisory board for Bristol Myers Squibb. The other authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: N. Bernard, in collaboration with the rest of the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goh, W., Sudholz, H., Foroutan, M. et al. IKAROS and AIOLOS directly regulate AP-1 transcriptional complexes and are essential for NK cell development. Nat Immunol 25, 240–255 (2024). https://doi.org/10.1038/s41590-023-01718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01718-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing