Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decoding the tumor microenvironment with spatial technologies

Abstract

Visualization of the cellular heterogeneity and spatial architecture of the tumor microenvironment (TME) is becoming increasingly important to understand mechanisms of disease progression and therapeutic response. This is particularly relevant in the era of cancer immunotherapy, in which the contexture of immune cell positioning within the tumor landscape has been proven to affect efficacy. Although single-cell technologies have mostly replaced conventional approaches to analyze specific cellular subsets within tumors, those that integrate a spatial dimension are now on the rise. In this Review, we assess the strengths and limitations of emerging spatial technologies with a focus on their applications in tumor immunology, as well as forthcoming opportunities for artificial intelligence (AI) and the value of integrating multiomics datasets to achieve a holistic picture of the TME.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Using multiomic technologies to decode tumor immune dynamics.
Fig. 2: Stages and challenges associated with single-cell spatial omics.

Similar content being viewed by others

References

  1. Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Bressan, D., Battistoni, G. & Hannon, G. J. The dawn of spatial omics. Science 381, eabq4964 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hara, T. et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39, 779–792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, J. H. et al. Spatial analysis of human lung cancer reveals organized immune hubs enriched for stem-like CD8 T cells and associated with immunotherapy response. Preprint at bioRxiv https://doi.org/10.1101/2023.04.04.535379 (2023).

  9. Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lomakin, A. et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 611, 594–602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Cho, C. S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, D. et al. Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, T., Ang, C. E. & Zhuang, X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell 185, 4448–4464 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zollinger, D. R., Lingle, S. E., Sorg, K., Beechem, J. M. & Merritt, C. R. GeoMx RNA assay: high multiplex, digital, spatial analysis of RNA in FFPE tissue. Methods Mol. Biol. 2148, 331–345 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, R. et al. Mapping single-cell transcriptomes in the intra-tumoral and associated territories of kidney cancer. Cancer Cell 40, 1583–1599 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hao, D. et al. The single-cell immunogenomic landscape of B and plasma cells in early-stage lung adenocarcinoma. Cancer Discov. 12, 2626–2645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ravi, V. M. et al. Spatially resolved multi-omics deciphers bidirectional tumor–host interdependence in glioblastoma. Cancer Cell 40, 639–655 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497–514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Anadon, C. M. et al. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. Cancer Cell 40, 545–557 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galeano Nino, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 611, 810–817 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. He, S. et al. High-plex multiomic analysis in FFPE at subcellular level by spatial molecular imaging. Preprint at bioRxiv https://doi.org/10.1101/2021.11.03.467020 (2022).

  33. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 13, 795 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ben-Chetrit, N. et al. Integration of whole transcriptome spatial profiling with protein markers. Nat. Biotechnol. 41, 788–793 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. 41, 1405–1409 (2023).

  38. Joshi, K. et al. Spatial heterogeneity of the T cell receptor repertoire reflects the mutational landscape in lung cancer. Nat. Med. 25, 1549–1559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, S. et al. Spatial maps of T cell receptors and transcriptomes reveal distinct immune niches and interactions in the adaptive immune response. Immunity 55, 1940–1952 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hudson, W. H. & Sudmeier, L. J. Localization of T cell clonotypes using the Visium spatial transcriptomics platform. STAR Protoc. 3, 101391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sudmeier, L. J. et al. Distinct phenotypic states and spatial distribution of CD8+ T cell clonotypes in human brain metastases. Cell Rep. Med. 3, 100620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hickey, J. W. et al. Organization of the human intestine at single-cell resolution. Nature 619, 572–584 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greenbaum, S. et al. A spatially resolved timeline of the human maternal–fetal interface. Nature 619, 595–605 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Keren, L. et al. A structured tumor–immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Ali, H. R. et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nat. Cancer 1, 163–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Danenberg, E. et al. Breast tumor microenvironment structures are associated with genomic features and clinical outcome. Nat. Genet. 54, 660–669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gruosso, T. et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J. Clin. Invest. 129, 1785–1800 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sorin, M. et al. Single-cell spatial landscapes of the lung tumour immune microenvironment. Nature 614, 548–554 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moldoveanu, D. et al. Spatially mapping the immune landscape of melanoma using imaging mass cytometry. Sci. Immunol. 7, eabi5072 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, X. Q. et al. Spatial predictors of immunotherapy response in triple-negative breast cancer. Nature 621, 868–876 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karimi, E. et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature 614, 555–563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McDowell, S. A. C. et al. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat. Cancer 2, 545–562 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carvajal-Hausdorf, D. E. et al. Multiplexed (18-plex) measurement of signaling targets and cytotoxic T cells in trastuzumab-treated patients using imaging mass cytometry. Clin. Cancer Res. 25, 3054–3062 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sorin, M. et al. Single-cell spatial landscape of immunotherapy response reveals mechanisms of CXCL13 enhanced antitumor immunity. J. Immunother. Cancer 11, e005545 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schurch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359 (2020).

    Article  Google Scholar 

  62. Phillips, D. et al. Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma. Nat. Commun. 12, 6726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Radtke, A. J. et al. IBEX: an iterative immunolabeling and chemical bleaching method for high-content imaging of diverse tissues. Nat. Protoc. 17, 378–401 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lin, J. R. et al. High-plex immunofluorescence imaging and traditional histology of the same tissue section for discovering image-based biomarkers. Nat. Cancer 4, 1036–1052 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Banik, G. et al. High-dimensional multiplexed immunohistochemical characterization of immune contexture in human cancers. Methods Enzymol. 635, 1–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Lin, J. R., Fallahi-Sichani, M., Chen, J. Y. & Sorger, P. K. Cyclic immunofluorescence (CycIF), a highly multiplexed method for single-cell imaging. Curr. Protoc. Chem. Biol. 8, 251–264 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lin, J. R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018).

  69. Liudahl, S. M. et al. Leukocyte heterogeneity in pancreatic ductal adenocarcinoma: phenotypic and spatial features associated with clinical outcome. Cancer Discov. 11, 2014–2031 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Carstens, J. L. et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat. Commun. 8, 15095 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Satpathy, S. et al. A proteogenomic portrait of lung squamous cell carcinoma. Cell 184, 4348–4371 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wilkerson, M. D. et al. Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types. Clin. Cancer Res. 16, 4864–4875 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

    Article  Google Scholar 

  74. Obradovic, A. et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 184, 2988–3005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vayrynen, S. A. et al. Composition, spatial characteristics, and prognostic significance of myeloid cell infiltration in pancreatic cancer. Clin. Cancer Res. 27, 1069–1081 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ruffin, A. T. et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma. Nat. Commun. 12, 3349 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gao, J. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 23, 551–555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Au, L. et al. Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma. Cancer Cell 39, 1497–1518 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Berry, S. et al. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade. Science 372, eaba2609 (2021).

  81. Jacquelot, N. et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat. Immunol. 22, 851–864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 39, 186–197 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Ringel, A. E. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Soltwisch, J. et al. Mass spectrometry imaging with laser-induced postionization. Science 348, 211–215 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Wiseman, J. M., Ifa, D. R., Song, Q. & Cooks, R. G. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. Int. Ed. Engl. 45, 7188–7192 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Kompauer, M., Heiles, S. & Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-µm lateral resolution. Nat. Methods 14, 90–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Niehaus, M., Soltwisch, J., Belov, M. E. & Dreisewerd, K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 16, 925–931 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. He, W. et al. Untargeted metabolomic characterization of glioblastoma intra-tumor heterogeneity using OrbiSIMS. Anal. Chem. 95, 5994–6001 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Passarelli, M. K. et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 14, 1175–1183 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Fletcher, J. S. & Vickerman, J. C. A new SIMS paradigm for 2D and 3D molecular imaging of bio-systems. Anal. Bioanal. Chem. 396, 85–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Linke, F. et al. Identifying new biomarkers of aggressive group 3 and SHH medulloblastoma using 3D hydrogel models, single cell RNA sequencing and 3D OrbiSIMS imaging. Acta Neuropathol. Commun. 11, 6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ganesh, S. et al. Spatially resolved 3D metabolomic profiling in tissues. Sci. Adv. 7, eabd0957 (2021).

  94. Weisel, F. J. et al. Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis. Nat. Immunol. 21, 331–342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Geier, B. et al. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat. Microbiol. 5, 498–510 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

  97. Alon, S. et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371, eaax2656 (2021).

  98. Kartasalo, K. et al. Comparative analysis of tissue reconstruction algorithms for 3D histology. Bioinformatics 34, 3013–3021 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kuett, L. et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 3, 122–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Lin, J. R. et al. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 186, 363–381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kiemen, A. L. et al. CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat. Methods 19, 1490–1499 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Braxton, A. M. et al. Three-dimensional genomic mapping of human pancreatic tissue reveals striking multifocality and genetic heterogeneity in precancerous lesions. Preprint at bioRxiv https://doi.org/10.1101/2023.01.27.525553 (2023).

  103. Catena, R., Montuenga, L. M. & Bodenmiller, B. Ruthenium counterstaining for imaging mass cytometry. J. Pathol. 244, 479–484 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sylwestrak, E. L., Rajasethupathy, P., Wright, M. A., Jaffe, A. & Deisseroth, K. Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell 164, 792–804 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945–958 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mai, H. et al. Whole-body cellular mapping in mouse using standard IgG antibodies. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01846-0 (2023).

    Article  PubMed  Google Scholar 

  108. Ueda, H. R. et al. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 21, 61–79 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci. 22, 317–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Molbay, M. et al. Single-cell precision nanotechnology in vivo. Preprint at bioRxiv https://doi.org/10.1101/2023.07.24.550304 (2023).

  111. Bhatia, H. S. et al. Spatial proteomics in three-dimensional intact specimens. Cell 185, 5040–5058 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Windhager, J., Bodenmiller, B. & Eling, N. An end-to-end workflow for multiplexed image processing and analysis. Preprint at bioRxiv https://doi.org/10.1101/2021.11.12.468357 (2021).

  115. Schapiro, D. et al. MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging. Nat. Methods 19, 311–315 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Karimi, E. et al. Machine learning meets classical computer vision for accurate cell identification. Preprint at bioRxiv https://doi.org/10.1101/2022.02.27.482183 (2022).

  117. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Bannon, D. et al. DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes. Nat. Methods 18, 43–45 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kobak, D. & Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 10, 5416 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chatzis, S. P. & Tsechpenakis, G. The infinite hidden Markov random field model. IEEE Trans. Neural Netw. 21, 1004–1014 (2010).

    Article  PubMed  Google Scholar 

  122. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 20, 61–80 (2009).

    Article  PubMed  Google Scholar 

  123. Cui, H. et al. scGPT: towards building a foundation model for single-cell multi-omics using generative AI. Preprint at bioRxiv https://doi.org/10.1101/2023.04.30.538439 (2023).

  124. Luca, B. A. et al. Atlas of clinically distinct cell states and ecosystems across human solid tumors. Cell 184, 5482–5496 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sultan, S. et al. ImmuNet: a segmentation-free machine learning pipeline for immune landscape phenotyping in tumors by muliplex imaging. Preprint at bioRxiv https://doi.org/10.1101/2021.10.22.464548 (2023).

  126. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Google Scholar 

  128. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat. Methods 14, 873–876 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Varrone, M., Tavernari, D., Santamaria-Martínez, A. & Ciriello, G. CellCharter: a scalable framework to chart and compare cell niches across multiple samples and spatial -omics technologies. Preprint at bioRxiv https://doi.org/10.1101/2023.01.10.523386 (2023).

  132. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Amezquita, R. A. et al. Orchestrating single-cell analysis with Bioconductor. Nat. Methods 17, 137–145 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable genes. Nat. Methods 15, 343–346 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat. Methods 17, 193–200 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Edsgard, D., Johnsson, P. & Sandberg, R. Identification of spatial expression trends in single-cell gene expression data. Nat. Methods 15, 339–342 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D. & Saez-Rodriguez, J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 23, 97 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ghazanfar, S. et al. Investigating higher-order interactions in single-cell data with scHOT. Nat. Methods 17, 799–806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cao, Z. J. & Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 40, 1458–1466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Crainiciuc, G. et al. Behavioural immune landscapes of inflammation. Nature 601, 415–421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hu, K. H. et al. ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nat. Methods 17, 833–843 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Medaglia, C. et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 358, 1622–1626 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen, W. et al. Live-seq enables temporal transcriptomic recording of single cells. Nature 608, 733–740 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single cells. Nature 541, 107–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Chow, K. K. et al. Imaging cell lineage with a synthetic digital recording system. Science 372, eabb3099 (2021).

  147. Askary, A. et al. In situ readout of DNA barcodes and single base edits facilitated by in vitro transcription. Nat. Biotechnol. 38, 66–75 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Milette, S. et al. Circadian control of neutrophil extracellular trap formation temporally regulates metastatic lung cancer progression. In Molecular Analysis for Precision Oncology Congress 2023 abstract 76P (2023).

  149. Qian, D. C. et al. Effect of immunotherapy time-of-day infusion on overall survival among patients with advanced melanoma in the USA (MEMOIR): a propensity score-matched analysis of a single-centre, longitudinal study. Lancet Oncol. 22, 1777–1786 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Nobori, T. et al. Time-resolved single-cell and spatial gene regulatory atlas of plants under pathogen attack. Preprint at bioRxiv https://doi.org/10.1101/2023.04.10.536170 (2023).

  151. Negreros-Osuna, A. A. et al. Radiomics texture features in advanced colorectal cancer: Correlation with BRAF mutation and 5-year overall survival. Radiol. Imaging Cancer 2, e190084 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Madonna, M. C. et al. In vivo metabolic imaging identifies lipid vulnerability in a preclinical model of Her2+/Neu breast cancer residual disease and recurrence. NPJ Breast Cancer 8, 111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Sorin for his valuable feedback on this paper. We acknowledge funding from the Canadian Institutes of Health Research (CIHR; PJT-162137, L.A.W.; PJT-159742, PJT-178306, D.F.Q.), TRANSCAN-3 (jointly supported by CIHR TRN-184696 and Canadian Cancer Society 707710, D.F.Q.), the Brain Tumor Funders’ Collaborative and Canada Foundation for Innovation. L.A.W. holds a Rosalind and Morris Goodman Chair in Lung Cancer Research, and D.F.Q. holds a Tier II Canada Research Chair in Tumour Microenvironment Research.

Author information

Authors and Affiliations

Authors

Contributions

D.F.Q. and L.A.W. contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Logan A. Walsh or Daniela F. Quail.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Linghua Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: N. Bernard, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, L.A., Quail, D.F. Decoding the tumor microenvironment with spatial technologies. Nat Immunol 24, 1982–1993 (2023). https://doi.org/10.1038/s41590-023-01678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01678-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer