Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-mutational neoantigens in disease

Abstract

The ability of mammals to mount adaptive immune responses culminating with the establishment of immunological memory is predicated on the ability of the mature T cell repertoire to recognize antigenic peptides presented by syngeneic MHC class I and II molecules. Although it is widely believed that mature T cells are highly skewed towards the recognition of antigenic peptides originating from genetically diverse (for example, foreign or mutated) protein-coding regions, preclinical and clinical data rather demonstrate that novel antigenic determinants efficiently recognized by mature T cells can emerge from a variety of non-mutational mechanisms. In this Review, we describe various mechanisms that underlie the formation of bona fide non-mutational neoantigens, such as epitope mimicry, upregulation of cryptic epitopes, usage of non-canonical initiation codons, alternative RNA splicing, and defective ribosomal RNA processing, as well as both enzymatic and non-enzymatic post-translational protein modifications. Moreover, we discuss the implications of the immune recognition of non-mutational neoantigens for human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mimicry and crypticity in non-mutational neo-antigenicity.
Fig. 2: Protein modifications in non-mutational neo-antigenicity.

Similar content being viewed by others

References

  1. Pishesha, N., Harmand, T. J. & Ploegh, H. L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 22, 751–764 (2022).

    CAS  PubMed  Google Scholar 

  2. Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Santambrogio, L. & Marrack, P. The broad spectrum of pathogenic autoreactivity. Nat. Rev. Immunol. 23, 69–70 (2023).

    CAS  PubMed  Google Scholar 

  4. ElTanbouly, M. A. & Noelle, R. J. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey. Nat. Rev. Immunol. 21, 257–267 (2021).

    CAS  PubMed  Google Scholar 

  5. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Crowther, M. D. & Sewell, A. K. The burgeoning role of MR1-restricted T-cells in infection, cancer and autoimmune disease. Curr. Opin. Immunol. 69, 10–17 (2021).

    CAS  PubMed  Google Scholar 

  7. Shahine, A., Van Rhijn, I., Rossjohn, J. & Moody, D. B. CD1 displays its own negative regulators. Curr. Opin. Immunol. 83, 102339 (2023).

    CAS  PubMed  Google Scholar 

  8. Hajishengallis, G. & Lambris, J. D. Microbial manipulation of receptor crosstalk in innate immunity. Nat. Rev. Immunol. 11, 187–200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

    CAS  PubMed  Google Scholar 

  10. Lang, H. L. et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3, 940–943 (2002).

    CAS  PubMed  Google Scholar 

  11. Schneider-Hohendorf, T. et al. Broader Epstein–Barr virus-specific T cell receptor repertoire in patients with multiple sclerosis. J. Exp. Med. 219, e20220650 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gibofsky, A. & Zabriskie, J. B. Rheumatic fever and poststreptococcal reactive arthritis. Curr. Opin. Rheumatol. 7, 299–305 (1995).

    CAS  PubMed  Google Scholar 

  13. Salmon, D. A. et al. Association between Guillain–Barré syndrome and influenza A (H1N1) 2009 monovalent inactivated vaccines in the USA: a meta-analysis. Lancet 381, 1461–1468 (2013).

    PubMed  Google Scholar 

  14. Ohashi, P. S. et al. Ablation of ‘tolerance’ and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    CAS  PubMed  Google Scholar 

  15. Harkonen, T., Lankinen, H., Davydova, B., Hovi, T. & Roivainen, M. Enterovirus infection can induce immune responses that cross-react with beta-cell autoantigen tyrosine phosphatase IA-2/IAR. J. Med Virol. 66, 340–350 (2002).

    CAS  PubMed  Google Scholar 

  16. Hiemstra, H. S. et al. Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase. Proc. Natl Acad. Sci. USA 98, 3988–3991 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Becker, J. & Winthrop, K. L. Update on rheumatic manifestations of infectious diseases. Curr. Opin. Rheumatol. 22, 72–77 (2010).

    PubMed  Google Scholar 

  18. de Pablo, P., Dietrich, T. & McAlindon, T. E. Association of periodontal disease and tooth loss with rheumatoid arthritis in the US population. J. Rheumatol. 35, 70–76 (2008).

    PubMed  Google Scholar 

  19. Barzilai, O., Ram, M. & Shoenfeld, Y. Viral infection can induce the production of autoantibodies. Curr. Opin. Rheumatol. 19, 636–643 (2007).

    CAS  PubMed  Google Scholar 

  20. James, J. A. et al. An increased prevalence of Epstein–Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J. Clin. Invest. 100, 3019–3026 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanlon, P., Avenell, A., Aucott, L. & Vickers, M. A. Systematic review and meta-analysis of the sero-epidemiological association between Epstein–Barr virus and systemic lupus erythematosus. Arthritis Res. Ther. 16, R3 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Gil-Cruz, C. et al. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science 366, 881–886 (2019).

    CAS  PubMed  Google Scholar 

  23. Dotan, A. et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev. 20, 102792 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Karami Fath, M. et al. SARS-CoV-2 proteome harbors peptides which are able to trigger autoimmunity responses: implications for infection, vaccination, and population coverage. Front Immunol. 12, 705772 (2021).

    PubMed  PubMed Central  Google Scholar 

  25. Woodruff, M. C. et al. Dysregulated naive B cells and de novo autoreactivity in severe COVID-19. Nature 611, 139–147 (2022).

  26. Ragone, C. et al. Molecular mimicry between tumor associated antigens and microbiota-derived epitopes. J. Transl. Med. 20, 316 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, J. et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 183, 1264–1281 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Di Conza, G., Ho, P. C., Cubillos-Ruiz, J. R. & Huang, S. C. Control of immune cell function by the unfolded protein response. Nat. Rev. Immunol. 23, 546–562 (2023).

    PubMed  Google Scholar 

  29. Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018).

    CAS  PubMed  Google Scholar 

  30. Zitvogel, L. & Kroemer, G. Cross-reactivity between microbial and tumor antigens. Curr. Opin. Immunol. 75, 102171 (2022).

    CAS  PubMed  Google Scholar 

  31. Vujanovic, L., Shi, J., Kirkwood, J. M., Storkus, W. J. & Butterfield, L. H. Molecular mimicry of MAGE-A6 and Mycoplasma penetrans HF-2 epitopes in the induction of antitumor CD8+ T-cell responses. Oncoimmunology 3, e954501 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. Chiaro, J. et al. Viral molecular mimicry influences the antitumor immune response in murine and human melanoma. Cancer Immunol. Res. 9, 981–993 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Loftus, D. J. et al. Identification of epitope mimics recognized by CTL reactive to the melanoma/melanocyte-derived peptide MART-1(27-35). J. Exp. Med. 184, 647–657 (1996).

    CAS  PubMed  Google Scholar 

  34. Chiou, S. H. et al. Global analysis of shared T cell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity 54, 586–602 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tagliamonte, M. et al. Molecular mimicry and cancer vaccine development. Mol. Cancer 22, 75 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Goubet, A. G. et al. Escherichia coli-specific CXCL13-producing TFH are associated with clinical efficacy of neoadjuvant PD-1 blockade against muscle-invasive bladder cancer. Cancer Discov. 12, 2280–2307 (2022).

    CAS  PubMed  Google Scholar 

  37. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    CAS  PubMed  Google Scholar 

  38. Antonelli, A. C., Binyamin, A., Hohl, T. M., Glickman, M. S. & Redelman-Sidi, G. Bacterial immunotherapy for cancer induces CD4-dependent tumor-specific immunity through tumor-intrinsic interferon-γ signaling. Proc. Natl Acad. Sci. USA 117, 18627–18637 (2020).

    PubMed  PubMed Central  Google Scholar 

  39. Wooldridge, L. et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287, 1168–1177 (2012).

    CAS  PubMed  Google Scholar 

  40. Song, I. et al. Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8+ T cell epitope. Nat. Struct. Mol. Biol. 24, 395–406 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Borbulevych, O. Y. et al. T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide–MHC molecular flexibility. Immunity 31, 885–896 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ishizuka, J. et al. Quantitating T cell cross-reactivity for unrelated peptide antigens. J. Immunol. 183, 4337–4345 (2009).

    CAS  PubMed  Google Scholar 

  43. Moudgil, K. D. & Sercarz, E. E. Understanding crypticity is the key to revealing the pathogenesis of autoimmunity. Trends Immunol. 26, 355–359 (2005).

    CAS  PubMed  Google Scholar 

  44. Koumantou, D. et al. Editing the immunopeptidome of melanoma cells using a potent inhibitor of endoplasmic reticulum aminopeptidase 1 (ERAP1). Cancer Immunol. Immunother. 68, 1245–1261 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Olsson, N., Jiang, W., Adler, L. N., Mellins, E. D. & Elias, J. E. Tuning DO:DM ratios modulates MHC class II immunopeptidomes. Mol. Cell Proteom. 21, 100204 (2022).

    CAS  Google Scholar 

  46. Klein, L., Klugmann, M., Nave, K. A., Tuohy, V. K. & Kyewski, B. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat. Med. 6, 56–61 (2000).

    CAS  PubMed  Google Scholar 

  47. Cardamone, G. et al. The characterization of GSDMB splicing and backsplicing profiles identifies novel isoforms and a circular RNA that are dysregulated in multiple sclerosis. Int. J. Mol. Sci. 18, 576 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Anderton, S. M., Viner, N. J., Matharu, P., Lowrey, P. A. & Wraith, D. C. Influence of a dominant cryptic epitope on autoimmune T cell tolerance. Nat. Immunol. 3, 175–181 (2002).

    CAS  PubMed  Google Scholar 

  49. Miller, S. D. et al. Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat. Med. 3, 1133–1136 (1997).

    CAS  PubMed  Google Scholar 

  50. Buttle, D. J., Bramwell, H. & Hollander, A. P. Proteolytic mechanisms of cartilage breakdown: a target for arthritis therapy? Clin. Mol. Pathol. 48, M167–M177 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu, W. J., Tan, Y., Liu, X. L., Yu, F. & Zhao, M. H. C1q A08 is a half-cryptic epitope of Anti-C1q A08 antibodies in lupus nephritis and important for the activation of complement classical pathway. Front Immunol. 11, 848 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Salemi, S., Caporossi, A. P., Boffa, L., Longobardi, M. G. & Barnaba, V. HIVgp120 activates autoreactive CD4-specific T cell responses by unveiling of hidden CD4 peptides during processing. J. Exp. Med. 181, 2253–2257 (1995).

    CAS  PubMed  Google Scholar 

  53. Finkel, Y. et al. The coding capacity of SARS-CoV-2. Nature 589, 125–130 (2021).

    CAS  PubMed  Google Scholar 

  54. Schmidt, N. et al. The SARS-CoV-2 RNA–protein interactome in infected human cells. Nat. Microbiol 6, 339–353 (2021).

    CAS  PubMed  Google Scholar 

  55. Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630–633 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Admon, A. The biogenesis of the immunopeptidome. Semin. Immunol. 67, 101766 (2023).

    CAS  PubMed  Google Scholar 

  57. Ruiz Cuevas, M. V. et al. Most non-canonical proteins uniquely populate the proteome or immunopeptidome. Cell Rep. 34, 108815 (2021).

    CAS  PubMed  Google Scholar 

  58. Yewdell, J. W. Immunology. Hide and seek in the peptidome. Science 301, 1334–1335 (2003).

    CAS  PubMed  Google Scholar 

  59. Yewdell, J. W., Anton, L. C. & Bennink, J. R. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J. Immunol. 157, 1823–1826 (1996).

    CAS  PubMed  Google Scholar 

  60. Ronsin, C. et al. A non-AUG-defined alternative open reading frame of the intestinal carboxyl esterase mRNA generates an epitope recognized by renal cell carcinoma-reactive tumor-infiltrating lymphocytes in situ. J. Immunol. 163, 483–490 (1999).

    CAS  PubMed  Google Scholar 

  61. Laumont, C. M. et al. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat. Commun. 7, 10238 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Starck, S. R. & Shastri, N. Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance. Immunol. Rev. 272, 8–16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Holly, J. & Yewdell, J. W. Game of Omes: ribosome profiling expands the MHC-I immunopeptidome. Curr. Opin. Immunol. 83, 102342 (2023).

    CAS  PubMed  Google Scholar 

  64. Croft, N. P. et al. Most viral peptides displayed by class I MHC on infected cells are immunogenic. Proc. Natl Acad. Sci. USA 116, 3112–3117 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Purcell, A. W., Croft, N. P. & Tscharke, D. C. Immunology by numbers: quantitation of antigen presentation completes the quantitative milieu of systems immunology! Curr. Opin. Immunol. 40, 88–95 (2016).

    CAS  PubMed  Google Scholar 

  66. Schwab, S. R., Shugart, J. A., Horng, T., Malarkannan, S. & Shastri, N. Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol. 2, e366 (2004).

    PubMed  PubMed Central  Google Scholar 

  67. Harapas, C. R. et al. Organellar homeostasis and innate immune sensing. Nat. Rev. Immunol. 22, 535–549 (2022).

    CAS  PubMed  Google Scholar 

  68. Komov, L., Melamed Kadosh, D., Barnea, E. & Admon, A. The effect of interferons on presentation of defective ribosomal products as HLA peptides. Mol. Cell Proteom. 20, 100105 (2021).

    CAS  Google Scholar 

  69. Maness, N. J. et al. CD8+ T cell recognition of cryptic epitopes is a ubiquitous feature of AIDS virus infection. J. Virol. 84, 11569–11574 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, N. et al. Defining viral defective ribosomal products: standard and alternative translation initiation events generate a common peptide from influenza A virus M2 and M1 mRNAs. J. Immunol. 196, 3608–3617 (2016).

    CAS  PubMed  Google Scholar 

  71. Zanker, D. J. et al. Influenza A virus infection induces viral and cellular defective ribosomal products encoded by alternative reading frames. J. Immunol. 202, 3370–3380 (2019).

    CAS  PubMed  Google Scholar 

  72. Smatti, M. K. et al. Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses 11, 762 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lodha, M., Erhard, F., Dolken, L. & Prusty, B. K. The hidden enemy within: non-canonical peptides in virus-induced autoimmunity. Front. Microbiol. 13, 840911 (2022).

    PubMed  PubMed Central  Google Scholar 

  74. Saulquin, X. et al. +1 Frameshifting as a novel mechanism to generate a cryptic cytotoxic T lymphocyte epitope derived from human interleukin 10. J. Exp. Med. 195, 353–358 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kracht, M. J. et al. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat. Med. 23, 501–507 (2017).

    CAS  PubMed  Google Scholar 

  76. Thomaidou, S. et al. Long RNA sequencing and ribosome profiling of inflamed β-cells reveal an extensive translatome landscape. Diabetes 70, 2299–2312 (2021).

    CAS  PubMed  Google Scholar 

  77. Dersh, D., Holly, J. & Yewdell, J. W. A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat. Rev. Immunol. 21, 116–128 (2021).

    CAS  PubMed  Google Scholar 

  78. Andersen, R. S. et al. Dissection of T-cell antigen specificity in human melanoma. Cancer Res. 72, 1642–1650 (2012).

    CAS  PubMed  Google Scholar 

  79. Andersen, R. S. et al. High frequency of T cells specific for cryptic epitopes in melanoma patients. Oncoimmunology 2, e25374 (2013).

    PubMed  PubMed Central  Google Scholar 

  80. Marcu, A. et al. Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors. J. Immunother. Cancer 9, e003404 (2021).

    PubMed  PubMed Central  Google Scholar 

  81. Schwarz, S. et al. T cells of colorectal cancer patients’ stimulated by neoantigenic and cryptic peptides better recognize autologous tumor cells. J. Immunother. Cancer 10, e005651 (2022).

    PubMed  PubMed Central  Google Scholar 

  82. Bezu, L. et al. Trial watch: peptide-based vaccines in anticancer therapy. Oncoimmunology 7, e1511506 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Vacchelli, E. et al. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology 2, e25771 (2013).

    PubMed  PubMed Central  Google Scholar 

  84. Disis, M. L. N. et al. Safety and outcomes of a plasmid DNA vaccine encoding the ERBB2 intracellular domain in patients with advanced-stage ERBB2-positive breast cancer: a phase 1 nonrandomized clinical trial. JAMA Oncol. 9, 71–78 (2023).

    PubMed  Google Scholar 

  85. Sawada, Y. et al. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. Oncoimmunology 5, e1129483 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Butterfield, L. H. et al. Immune correlates of GM-CSF and melanoma peptide vaccination in a randomized trial for the adjuvant therapy of resected high-risk melanoma (E4697). Clin. Cancer Res. 23, 5034–5043 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schwartzentruber, D. J. et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 364, 2119–2127 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jäger, E. et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc. Natl Acad. Sci. USA 97, 12198–12203 (2000).

    PubMed  PubMed Central  Google Scholar 

  89. Gnjatic, S. et al. CD8+ T cell responses against a dominant cryptic HLA-A2 epitope after NY-ESO-1 peptide immunization of cancer patients. Proc. Natl Acad. Sci. USA 99, 11813–11818 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Klionsky, D. J. et al. Autophagy in major human diseases. EMBO J. 40, e108863 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. van de Ven, R. et al. Autophagosome-based strategy to monitor apparent tumor-specific CD8 T cells in patients with prostate cancer. Oncoimmunology 7, e1466766 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Pataskar, A. et al. Tryptophan depletion results in tryptophan-to-phenylalanine substitutants. Nature 603, 721–727 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Netzer, N. et al. Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462, 522–526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Faridi, P., Dorvash, M. & Purcell, A. W. Spliced HLA-bound peptides: a Black Swan event in immunology. Clin. Exp. Immunol. 204, 179–188 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mishto, M. et al. Driving forces of proteasome-catalyzed peptide splicing in yeast and humans. Mol. Cell Proteom. 11, 1008–1023 (2012).

    CAS  Google Scholar 

  96. Hanada, K., Yewdell, J. W. & Yang, J. C. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427, 252–256 (2004).

    CAS  PubMed  Google Scholar 

  97. Vigneron, N. et al. An antigenic peptide produced by peptide splicing in the proteasome. Science 304, 587–590 (2004).

    CAS  PubMed  Google Scholar 

  98. Sengupta, D., Graham, M., Liu, X. & Cresswell, P. Proteasomal degradation within endocytic organelles mediates antigen cross-presentation. EMBO J. 38, e99266 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Paes, W. et al. Contribution of proteasome-catalyzed peptide cis-splicing to viral targeting by CD8+ T cells in HIV-1 infection. Proc. Natl Acad. Sci. USA 116, 24748–24759 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Platteel, A. C. et al. CD8+ T cells of Listeria monocytogenes-infected mice recognize both linear and spliced proteasome products. Eur. J. Immunol. 46, 1109–1118 (2016).

    CAS  PubMed  Google Scholar 

  101. Platteel, A. C. M. et al. Multi-level strategy for identifying proteasome-catalyzed spliced epitopes targeted by CD8+ T cells during bacterial infection. Cell Rep. 20, 1242–1253 (2017).

    CAS  PubMed  Google Scholar 

  102. Liepe, J. et al. A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354, 354–358 (2016).

    CAS  PubMed  Google Scholar 

  103. Faridi, P. et al. A subset of HLA-I peptides are not genomically templated: evidence for cis- and trans-spliced peptide ligands. Sci. Immunol. 3, eaar3947 (2018).

    PubMed  Google Scholar 

  104. Mylonas, R. et al. Estimating the contribution of proteasomal spliced peptides to the HLA-I ligandome. Mol. Cell Proteom. 17, 2347–2357 (2018).

    CAS  Google Scholar 

  105. Levy, R. et al. Large-scale immunopeptidome analysis reveals recurrent posttranslational splicing of cancer- and immune-associated genes. Mol. Cell Proteom. 22, 100519 (2023).

    CAS  Google Scholar 

  106. Ouspenskaia, T. et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat. Biotechnol. 40, 209–217 (2022).

    CAS  PubMed  Google Scholar 

  107. Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351, 711–714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gonzalez-Duque, S. et al. Conventional and neo-antigenic peptides presented by β cells are targeted by circulating naïve CD8+ T cells in type 1 diabetic and healthy donors. Cell Metab. 28, 946–960.e946 (2018).

    CAS  PubMed  Google Scholar 

  109. Azoury, M. E. et al. Peptides derived from insulin granule proteins are targeted by CD8+ T cells across MHC class I restrictions in humans and NOD mice. Diabetes 69, 2678–2690 (2020).

    CAS  PubMed  Google Scholar 

  110. Wiles, T. A. et al. An insulin–IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse. J. Autoimmun. 78, 11–18 (2017).

    CAS  PubMed  Google Scholar 

  111. Jin, N. et al. N-terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes. Proc. Natl Acad. Sci. USA 112, 13318–13323 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Faridi, P. et al. Spliced peptides and cytokine-driven changes in the immunopeptidome of melanoma. Cancer Immunol. Res. 8, 1322–1334 (2020).

    PubMed  Google Scholar 

  113. Skipper, J. C. et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J. Exp. Med. 183, 527–534 (1996).

    CAS  PubMed  Google Scholar 

  114. Ebstein, F. et al. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes. Sci. Rep. 6, 24032 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Dalet, A. et al. An antigenic peptide produced by reverse splicing and double asparagine deamidation. Proc. Natl Acad. Sci. USA 108, E323–E331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Conibear, A. C. Deciphering protein post-translational modifications using chemical biology tools. Nat. Rev. Chem. 4, 674–695 (2020).

    CAS  PubMed  Google Scholar 

  117. Cannizzo, E. S. et al. Age-related oxidative stress compromises endosomal proteostasis. Cell Rep. 2, 136–149 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Umemoto, A. et al. Identification of anti-citrullinated osteopontin antibodies and increased inflammatory response by enhancement of osteopontin binding to fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res. Ther. 25, 25 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Curran, A. M. et al. Citrullination modulates antigen processing and presentation by revealing cryptic epitopes in rheumatoid arthritis. Nat. Commun. 14, 1061 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang, M. L. et al. Citrullination of glucokinase is linked to autoimmune diabetes. Nat. Commun. 13, 1870 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Deraos, G. et al. Citrullination of linear and cyclic altered peptide ligands from myelin basic protein (MBP(87-99)) epitope elicits a TH1 polarized response by T cells isolated from multiple sclerosis patients: implications in triggering disease. J. Med. Chem. 51, 7834–7842 (2008).

    CAS  PubMed  Google Scholar 

  122. Doran, T. M. et al. Discovery of phosphorylated peripherin as a major humoral autoantigen in type 1 diabetes mellitus. Cell Chem. Biol. 23, 618–628 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Terzoglou, A. G., Routsias, J. G., Avrameas, S., Moutsopoulos, H. M. & Tzioufas, A. G. Preferential recognition of the phosphorylated major linear B-cell epitope of La/SSB 349-368 aa by anti-La/SSB autoantibodies from patients with systemic autoimmune diseases. Clin. Exp. Immunol. 144, 432–439 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Utz, P. J., Hottelet, M., Schur, P. H. & Anderson, P. Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus. J. Exp. Med. 185, 843–854 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).

    CAS  PubMed  Google Scholar 

  126. Sullivan, B. A., Kraj, P., Weber, D. A., Ignatowicz, L. & Jensen, P. E. Positive selection of a Qa-1-restricted T cell receptor with specificity for insulin. Immunity 17, 95–105 (2002).

    CAS  PubMed  Google Scholar 

  127. Zamvil, S. S. et al. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 324, 258–260 (1986).

    CAS  PubMed  Google Scholar 

  128. Liu, C. L. et al. Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Res. Ther. 14, R25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Cannizzo, E. S., Clement, C. C., Sahu, R., Follo, C. & Santambrogio, L. Oxidative stress, inflamm-aging and immunosenescence. J. Proteom. 74, 2313–2323 (2011).

    CAS  Google Scholar 

  130. Taleb, A., Witztum, J. L. & Tsimikas, S. Oxidized phospholipids on apoB-100-containing lipoproteins: a biomarker predicting cardiovascular disease and cardiovascular events. Biomark. Med. 5, 673–694 (2011).

    CAS  PubMed  Google Scholar 

  131. Sakuraba, K. et al. Autoantibodies targeting malondialdehyde-modifications in rheumatoid arthritis regulate osteoclasts via inducing glycolysis and lipid biosynthesis. J. Autoimmun. 133, 102903 (2022).

    CAS  PubMed  Google Scholar 

  132. Zurawa-Janicka, D. et al. Preferential immunoglobulin oxidation in children with juvenile idiopathic arthritis. Scand. J. Rheumatol. 35, 193–200 (2006).

    CAS  PubMed  Google Scholar 

  133. Clement, C. C. et al. Autoimmune response to transthyretin in juvenile idiopathic arthritis. JCI Insight 1, e85633 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. Clement, C. C. et al. Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. Immunity 54, 721–736 (2021).

    CAS  PubMed  Google Scholar 

  135. Clement, C. C. et al. PDIA3 epitope-driven immune autoreactivity contributes to hepatic damage in type 2 diabetes. Sci. Immunol. 7, eabl3795 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Champion, B. R. et al. Identification of a thyroxine-containing self-epitope of thyroglobulin which triggers thyroid autoreactive T cells. J. Exp. Med. 174, 363–370 (1991).

    CAS  PubMed  Google Scholar 

  137. Cirrito, T. P., Pu, Z., Deck, M. B. & Unanue, E. R. Deamidation of asparagine in a major histocompatibility complex-bound peptide affects T cell recognition but does not explain type B reactivity. J. Exp. Med. 194, 1165–1170 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Morris, G. & Maes, M. Oxidative and nitrosative stress and immune-inflammatory pathways in patients with myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). Curr. Neuropharmacol. 12, 168–185 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Petroni, G., Buqué, A., Coussens, L. M. & Galluzzi, L. Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat. Rev. Drug Discov. 21, 440–462 (2022).

    CAS  PubMed  Google Scholar 

  140. Srivastava, A. K., Guadagnin, G., Cappello, P. & Novelli, F. Post-translational modifications in tumor-associated antigens as a platform for novel immuno-oncology therapies. Cancers 15, 138 (2022).

    PubMed  PubMed Central  Google Scholar 

  141. Cappello, P. et al. An integrated humoral and cellular response is elicited in pancreatic cancer by alpha-enolase, a novel pancreatic ductal adenocarcinoma-associated antigen. Int. J. Cancer 125, 639–648 (2009).

    CAS  PubMed  Google Scholar 

  142. Kumai, T. et al. Induction of tumor-reactive T helper responses by a posttranslational modified epitope from tumor protein p53. Cancer Immunol. Immunother. 63, 469–478 (2014).

    CAS  PubMed  Google Scholar 

  143. Zarling, A. L. et al. MHC-restricted phosphopeptides from insulin receptor substrate-2 and CDC25b offer broad-based immunotherapeutic agents for cancer. Cancer Res. 74, 6784–6795 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Symonds, P. et al. Citrullinated epitopes identified on tumour MHC class II by peptide elution stimulate both regulatory and TH1 responses and require careful selection for optimal anti-tumour responses. Front. Immunol. 12, 764462 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhou, W. et al. Mass spectrometry analysis of the post-translational modifications of alpha-enolase from pancreatic ductal adenocarcinoma cells. J. Proteome Res. 9, 2929–2936 (2010).

    CAS  PubMed  Google Scholar 

  146. Brentville, V. A. et al. Citrullinated vimentin presented on MHC-II in tumor cells is a target for CD4+ T-cell-mediated antitumor immunity. Cancer Res. 76, 548–560 (2016).

    CAS  PubMed  Google Scholar 

  147. Cook, K. et al. Citrullinated α-enolase is an effective target for anti-cancer immunity. Oncoimmunology 7, e1390642 (2018).

    PubMed  Google Scholar 

  148. Scheid, E. et al. Tn-MUC1 DC vaccination of rhesus macaques and a phase I/II trial in patients with nonmetastatic castrate-resistant prostate cancer. Cancer Immunol. Res. 4, 881–892 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Stergiou, N. et al. Reduced breast tumor growth after immunization with a tumor-restricted MUC1 glycopeptide conjugated to tetanus toxoid. Cancer Immunol. Res. 7, 113–122 (2019).

    CAS  PubMed  Google Scholar 

  150. McShane, E. & Selbach, M. Physiological functions of intracellular protein degradation. Annu. Rev. Cell Dev. Biol. 38, 241–262 (2022).

    CAS  PubMed  Google Scholar 

  151. Kotsias, F., Cebrian, I. & Alloatti, A. Antigen processing and presentation. Int. Rev. Cell Mol. Biol. 348, 69–121 (2019).

    CAS  PubMed  Google Scholar 

  152. Clement, C. C. et al. The dendritic cell major histocompatibility complex II (MHC II) peptidome derives from a variety of processing pathways and includes peptides with a broad spectrum of HLA-DM sensitivity. J. Biol. Chem. 291, 5576–5595 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Vitale, I. et al. Apoptotic cell death in disease—current understanding of the NCCD 2023. Cell Death Differ. 30, 1097–1154 (2023).

    PubMed  PubMed Central  Google Scholar 

  154. Alvarez, I., Antón, L. C. & James, E. A. Editorial: alternative antigen processing and presentation in immune disorders. Front. Immunol. 13, 993393 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Darrah, E. & Rosen, A. Granzyme B cleavage of autoantigens in autoimmunity. Cell Death Differ. 17, 624–632 (2010).

    CAS  PubMed  Google Scholar 

  156. Zhang, D., Beresford, P. J., Greenberg, A. H. & Lieberman, J. Granzymes A and B directly cleave lamins and disrupt the nuclear lamina during granule-mediated cytolysis. Proc. Natl Acad. Sci. USA 98, 5746–5751 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhu, P. et al. The cytotoxic T lymphocyte protease granzyme A cleaves and inactivates poly(adenosine 5′-diphosphate-ribose) polymerase-1. Blood 114, 1205–1216 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Cram, D. S., Fisicaro, N., Coppel, R. L., Whittingham, S. & Harrison, L. C. Mapping of multiple B cell epitopes on the 70-kilodalton autoantigen of the U1 ribonucleoprotein complex. J. Immunol. 145, 630–635 (1990).

    CAS  PubMed  Google Scholar 

  159. O’Brien, R. M., Cram, D. S., Coppel, R. L. & Harrison, L. C. T-cell epitopes on the 70-kDa protein of the (U1)RNP complex in autoimmune rheumatologic disorders. J. Autoimmun. 3, 747–757 (1990).

    PubMed  Google Scholar 

  160. Schachna, L. et al. Recognition of granzyme B-generated autoantigen fragments in scleroderma patients with ischemic digital loss. Arthritis Rheum. 46, 1873–1884 (2002).

    CAS  PubMed  Google Scholar 

  161. Huang, M. et al. Detection of apoptosis-specific autoantibodies directed against granzyme B-induced cleavage fragments of the SS-B (La) autoantigen in sera from patients with primary Sjögren’s syndrome. Clin. Exp. Immunol. 142, 148–154 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Jeoung, D. et al. Identification of autoantibody against poly (ADP-ribose) polymerase (PARP) fragment as a serological marker in systemic lupus erythematosus. J. Autoimmun. 22, 87–94 (2004).

    CAS  PubMed  Google Scholar 

  163. Van den Steen, P. E. et al. Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J. 16, 379–389 (2002).

    PubMed  Google Scholar 

  164. Descamps, F. J., Van den Steen, P. E., Nelissen, I., Van Damme, J. & Opdenakker, G. Remnant epitopes generate autoimmunity: from rheumatoid arthritis and multiple sclerosis to diabetes. Adv. Exp. Med Biol. 535, 69–77 (2003).

    CAS  PubMed  Google Scholar 

  165. Nagarajan, N. A., Gonzalez, F. & Shastri, N. Nonclassical MHC class Ib-restricted cytotoxic T cells monitor antigen processing in the endoplasmic reticulum. Nat. Immunol. 13, 579–586 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Garcia-Medel, N. et al. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 1 polymorphism and HLA-B27 in vivo. Mol. Cell Proteom. 11, 1416–1429 (2012).

    Google Scholar 

  167. Alvarez-Navarro, C., Martin-Esteban, A., Barnea, E., Admon, A. & Lopez de Castro, J. A. Endoplasmic reticulum aminopeptidase 1 (ERAP1) polymorphism relevant to inflammatory disease shapes the peptidome of the birdshot chorioretinopathy-associated HLA-A*29:02 antigen. Mol. Cell Proteom. 14, 1770–1780 (2015).

    CAS  Google Scholar 

  168. Sun, L. D. et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat. Genet. 42, 1005–1009 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

  170. Chen, L. et al. Identification of an unconventional subpeptidome bound to the Behcet’s disease-associated HLA-B*51:01 that is regulated by endoplasmic reticulum aminopeptidase 1 (ERAP1). Mol. Cell Proteom. 19, 871–883 (2020).

    CAS  Google Scholar 

  171. Peters, H. L. et al. Serine proteases enhance immunogenic antigen presentation on lung cancer cells. Cancer Immunol. Res. 5, 319–329 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Goris, A. & Liston, A. The immunogenetic architecture of autoimmune disease. Cold Spring Harb. Perspect. Biol. 4, a007260 (2012).

    PubMed  PubMed Central  Google Scholar 

  173. Vandenbroeck, K. Cytokine gene polymorphisms and human autoimmune disease in the era of genome-wide association studies. J. Interferon Cytokine Res. 32, 139–151 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang, Y., Liu, J., Wang, C., Liu, J. & Lu, W. Toll-Like receptors gene polymorphisms in autoimmune disease. Front. Immunol. 12, 672346 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).

    CAS  PubMed  Google Scholar 

  176. Castro, J. E. et al. Fas modulation of apoptosis during negative selection of thymocytes. Immunity 5, 617–627 (1996).

    CAS  PubMed  Google Scholar 

  177. Madsen, L. S. et al. A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat. Genet. 23, 343–347 (1999).

    CAS  PubMed  Google Scholar 

  178. Hahn, M., Nicholson, M. J., Pyrdol, J. & Wucherpfennig, K. W. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat. Immunol. 6, 490–496 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Bulek, A. M. et al. Structural basis for the killing of human beta cells by CD8+ T cells in type 1 diabetes. Nat. Immunol. 13, 283–289 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Cole, D. K. et al. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J. Clin. Invest. 126, 3626 (2016).

    PubMed  PubMed Central  Google Scholar 

  181. Yin, Y., Li, Y., Kerzic, M. C., Martin, R. & Mariuzza, R. A. Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO J. 30, 1137–1148 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Miyadera, H., Ohashi, J., Lernmark, A., Kitamura, T. & Tokunaga, K. Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA. J. Clin. Invest. 125, 275–291 (2015).

    PubMed  Google Scholar 

  183. Raj, P. et al. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. eLife 5, e12089 (2016).

    PubMed  PubMed Central  Google Scholar 

  184. O’Huigin, C. et al. The molecular origin and consequences of escape from miRNA regulation by HLA-C alleles. Am. J. Hum. Genet 89, 424–431 (2011).

    PubMed  PubMed Central  Google Scholar 

  185. Hu, X. et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 47, 898–905 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to V. Klapp for help preparing figures. L.J.S. is supported by the National Institutes of Health (NIH) (AG067581, AI146180, AI143976, AI137198, AI127869, AI153828, AR080593) and the Parkinson’s Foundation. L.G. is/has been supported (as a principal investigator (PI) unless otherwise indicated) by one R01 grant from the NIH/NCI (CA271915), by two Breakthrough Level 2 grants from the US DoD BCRP (BC180476P1, BC210945), by a grant from the STARR Cancer Consortium (I16-0064), by a Transformative Breast Cancer Consortium Grant from the US DoD BCRP (W81XWH2120034, PI: Formenti), by a U54 grant from NIH/NCI (CA274291, PI: Deasy, Formenti, Weichselbaum), by the 2019 Laura Ziskin Prize in Translational Research (ZP-6177, PI: Formenti) from the Stand Up to Cancer (SU2C), by a Mantle Cell Lymphoma Research Initiative (MCL-RI, PI: Chen-Kiang) grant from the Leukemia and Lymphoma Society (LLS), by a Rapid Response Grant from the Functional Genomics Initiative, by a pre-SPORE grant (PI: Demaria, Formenti) and a Clinical Trials Innovation Grant from the Sandra and Edward Meyer Cancer Center; by startup funds from the Department of Radiation Oncology at Weill Cornell Medicine, by industrial collaborations with Lytix Biopharma, Promontory, and Onxeo, as well as by donations from Promontory, the Luke Heller TECPR2 Foundation, SOTIO Biotech a.s., Lytix Biopharma, Onxeo, Ricerchiamo, and Noxopharm. L.S. is supported by the NIH (AI153828, AI146180, no. AI137198, AI137198-S, AI169723, AI134696, AG031782, AT011419, AR081493, AI170897) and the Cure Alzheimer’s Foundation.

Author information

Authors and Affiliations

Authors

Contributions

L.G. and L.S. conceived the article. L.J.S., L.G., and L.S. wrote the first version of the manuscript with constructive input from C.C.

Corresponding authors

Correspondence to Lorenzo Galluzzi or Laura Santambrogio.

Ethics declarations

Competing interests

L.G. declares holding research contracts with Lytix Biopharma, Promontory and Onxeo, and has received consulting/advisory honoraria from Boehringer Ingelheim, AstraZeneca, OmniSEQ, Onxeo, The Longevity Labs, Inzen, Imvax, Sotio, Promontory, Noxopharm, EduCom, and the Luke Heller TECPR2 Foundation, and holds Promontory stock options. The other authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks the anonymous reviewers for their contribution to the peer review of this work. Nicholas J. Bernard was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stern, L.J., Clement, C., Galluzzi, L. et al. Non-mutational neoantigens in disease. Nat Immunol 25, 29–40 (2024). https://doi.org/10.1038/s41590-023-01664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01664-1

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer