Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardinal features of immune memory in innate lymphocytes

Abstract

The ability of vertebrates to ‘remember’ previous infections had once been attributed exclusively to adaptive immunity. We now appreciate that innate lymphocytes also possess memory properties akin to those of adaptive immune cells. In this Review, we draw parallels from T cell biology to explore the key features of immune memory in innate lymphocytes, including quantity, quality, and location. We discuss the signals that trigger clonal or clonal-like expansion in innate lymphocytes, and highlight recent studies that shed light on the complex cellular and molecular crosstalk between metabolism, epigenetics, and transcription responsible for differentiating innate lymphocyte responses towards a memory fate. Additionally, we explore emerging evidence that activated innate lymphocytes relocate and establish themselves in specific peripheral tissues during infection, which may facilitate an accelerated response program akin to those of tissue-resident memory T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Advantage of numerical abundance.
Fig. 2: Triad of molecular adaptations.
Fig. 3: Convenience of tissue redistribution.

Similar content being viewed by others

References

  1. Riedel, S. Edward Jenner and the history of smallpox and vaccination. Proc. (Bayl. Univ. Med Cent.) 18, 21–25 (2005).

    PubMed  Google Scholar 

  2. Boylston, A. The origins of inoculation. J. R. Soc. Med. 105, 309–313 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dokun, A. O. et al. Specific and nonspecific NK cell activation during virus infection. Nat. Immunol. 2, 951–956 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Daniels, K. A. et al. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J. Exp. Med. 194, 29–44 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown, M. G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Grassmann, S. et al. Distinct surface expression of activating receptor Ly49H drives differential expansion of NK cell clones upon murine cytomegalovirus infection. Immunity 50, 1391–1400 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Reeves, R. K. et al. Antigen-specific NK cell memory in rhesus macaques. Nat. Immunol. 16, 927–932 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schlums, H. et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42, 443–456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lopez-Verges, S. et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA 108, 14725–14732 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, J. et al. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42, 431–442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ty, M. et al. Malaria-driven expansion of adaptive-like functional CD56-negative NK cells correlates with clinical immunity to malaria. Sci. Transl. Med. 15, eadd9012 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hart, G. T. et al. Adaptive NK cells in people exposed to Plasmodium falciparum correlate with protection from malaria. J. Exp. Med. 216, 1280–1290 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruckert, T., Lareau, C. A., Mashreghi, M. F., Ludwig, L. S. & Romagnani, C. Clonal expansion and epigenetic inheritance of long-lasting NK cell memory. Nat. Immunol. 23, 1551–1563 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287, 1031 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Heatley, S. L. et al. Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen-E (HLA-E) by natural killer cells. J. Biol. Chem. 288, 8679–8690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hammer, Q. et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol. 19, 453–463 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Ulbrecht, M. et al. Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J. Immunol. 164, 5019–5022 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nabekura, T. et al. Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity 40, 225–234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nabekura, T. et al. Cutting edge: NKG2D signaling enhances NK cell responses but alone is insufficient to drive expansion during mouse cytomegalovirus infection. J. Immunol. 199, 1567–1571 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Nabekura, T. & Lanier, L. L. Activating receptors for self-MHC class I enhance effector functions and memory differentiation of NK cells during mouse cytomegalovirus infection. Immunity 45, 74–82 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, L. L. et al. Critical role of CD2 co-stimulation in adaptive natural killer cell responses revealed in NKG2C-deficient humans. Cell Rep. 15, 1088–1099 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Abbas, A. et al. The activation trajectory of plasmacytoid dendritic cells in vivo during a viral infection. Nat. Immunol. 21, 983–997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Valente, M. et al. Novel mouse models based on intersectional genetics to identify and characterize plasmacytoid dendritic cells. Nat. Immunol. 24, 714–728 (2023).

  30. Lio, C. W. et al. cGAS–STING signaling regulates initial innate control of cytomegalovirus infection. J. Virol. 90, 7789–7797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paijo, J. et al. cGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. PLoS Pathog. 12, e1005546 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Madera, S. et al. Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide. J. Exp. Med. 213, 225–233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weizman, O. E. et al. ILC1 confer early host protection at initial sites of viral infection. Cell 171, 795–808 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rolle, A. et al. IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J. Clin. Invest. 124, 5305–5316 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sun, J. C. et al. Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J. Exp. Med. 209, 947–954 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andrews, D. M., Scalzo, A. A., Yokoyama, W. M., Smyth, M. J. & Degli-Esposti, M. A. Functional interactions between dendritic cells and NK cells during viral infection. Nat. Immunol. 4, 175–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Chaix, J. et al. Cutting edge: priming of NK cells by IL-18. J. Immunol. 181, 1627–1631 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Wiedemann, G. M. et al. Divergent role for STAT5 in the adaptive responses of natural killer cells. Cell Rep. 33, 108498 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wiedemann, G. M. et al. Deconvoluting global cytokine signaling networks in natural killer cells. Nat. Immunol. 22, 627–638 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bekiaris, V. et al. Ly49H+ NK cells migrate to and protect splenic white pulp stroma from murine cytomegalovirus infection. J. Immunol. 180, 6768–6776 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Dokun, A. O., Chu, D. T., Yang, L., Bendelac, A. S. & Yokoyama, W. M. Analysis of in situ NK cell responses during viral infection. J. Immunol. 167, 5286–5293 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Andrews, D. M. et al. NK1.1+ cells and murine cytomegalovirus infection: what happens in situ? J. Immunol. 166, 1796–1802 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Salazar-Mather, T. P., Ishikawa, R. & Biron, C. A. NK cell trafficking and cytokine expression in splenic compartments after IFN induction and viral infection. J. Immunol. 157, 3054–3064 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Hsu, K. M., Pratt, J. R., Akers, W. J., Achilefu, S. I. & Yokoyama, W. M. Murine cytomegalovirus displays selective infection of cells within hours after systemic administration. J. Gen. Virol. 90, 33–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Flommersfeld, S. et al. Fate mapping of single NK cells identifies a type 1 innate lymphoid-like lineage that bridges innate and adaptive recognition of viral infection. Immunity 54, 2288–2304 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Diaz-Salazar, C. et al. Cell-intrinsic adrenergic signaling controls the adaptive NK cell response to viral infection. J. Exp. Med. 217, e20190549 (2020).

  48. Benechet, A. P. et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature 574, 200–205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kern, M. et al. Virally infected mouse liver endothelial cells trigger CD8+ T-cell immunity. Gastroenterology 138, 336–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, Y. et al. Vaginal type-II mucosa is an inductive site for primary CD8+ T-cell mucosal immunity. Nat. Commun. 6, 6100 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Weizman, O. E. et al. Mouse cytomegalovirus-experienced ILC1s acquire a memory response dependent on the viral glycoprotein m12. Nat. Immunol. 20, 1004–1011 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aguilar, O. A. et al. A viral immunoevasin controls innate immunity by targeting the prototypical natural killer cell receptor family. Cell 169, 58–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Martinez-Gonzalez, I. et al. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45, 198–208 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Verma, M. et al. The molecular and epigenetic mechanisms of innate lymphoid cell (ILC) memory and its relevance for asthma. J. Exp. Med. 218, e20201354 (2021).

  55. Serafini, N. et al. Trained ILC3 responses promote intestinal defense. Science 375, 859–863 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Naik, S. & Fuchs, E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 607, 249–255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Halper-Stromberg, A. & Jabri, B. Maladaptive consequences of inflammatory events shape individual immune identity. Nat. Immunol. 23, 1675–1686 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Busch, D. H. & Pamer, E. G. T cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Adams, N. M. et al. Cytomegalovirus infection drives avidity selection of natural killer cells. Immunity 50, 1381–1390 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ma, E. H. et al. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity 51, 856–870 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Xu, K. et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science 371, 405–410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Phan, A. T. et al. Constitutive glycolytic metabolism supports CD8+ T cell effector memory differentiation during viral infection. Immunity 45, 1024–1037 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sheppard, S. et al. Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep. 35, 109210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Loftus, R. M. et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun. 9, 2341 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liu, W. et al. Lactate regulates cell cycle by remodeling the anaphase promoting complex. Nature 616, 790–797 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Littwitz-Salomon, E. et al. Metabolic requirements of NK cells during the acute response against retroviral infection. Nat. Commun. 12, 5376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dong, H. et al. The IRE1 endoplasmic reticulum stress sensor activates natural killer cell immunity in part by regulating c-Myc. Nat. Immunol. 20, 865–878 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Victorino, F. et al. HIF1α is required for NK cell metabolic adaptation during virus infection. eLife 10, e68484 (2021).

  73. Ni, J. et al. Single-cell RNA sequencing of tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α unleashes NK cell activity. Immunity 52, 1075–1087 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cui, G. et al. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161, 750–761 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Raud, B. et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab. 28, 504–515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  PubMed  Google Scholar 

  78. O’Sullivan, T. E., Johnson, L. R., Kang, H. H. & Sun, J. C. BNIP3- and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity 43, 331–342 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cichocki, F. et al. ARID5B regulates metabolic programming in human adaptive NK cells. J. Exp. Med. 215, 2379–2395 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arts, R. J. et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 24, 807–819 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bekkering, S. et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell 172, 135–146 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861–873 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Dai, Z., Ramesh, V. & Locasale, J. W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21, 737–753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yu, B. et al. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation. Nat. Immunol. 18, 573–582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Russ, B. E. et al. Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8+ T cell differentiation. Immunity 41, 853–865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Soriano-Baguet, L. & Brenner, D. Metabolism and epigenetics at the heart of T cell function. Trends Immunol. 44, 231–244 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Wenes, M. et al. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metab. 34, 731–746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 540, 236–241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Piccirillo, A. R., Cattley, R. T., D’Cruz, L. M. & Hawse, W. F. Histone acetyltransferase CBP is critical for conventional effector and memory T-cell differentiation in mice. J. Biol. Chem. 294, 2397–2406 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Kakaradov, B. et al. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat. Immunol. 18, 422–432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gray, S. M., Amezquita, R. A., Guan, T., Kleinstein, S. H. & Kaech, S. M. Polycomb repressive complex 2-mediated chromatin repression guides effector CD8+ T cell terminal differentiation and loss of multipotency. Immunity 46, 596–608 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pace, L. et al. The epigenetic control of stemness in CD8+ T cell fate commitment. Science 359, 177–186 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Lau, C. M. et al. Epigenetic control of innate and adaptive immune memory. Nat. Immunol. 19, 963–972 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sciume, G. et al. Rapid enhancer remodeling and transcription factor repurposing enable high magnitude gene induction upon acute activation of NK cells. Immunity 53, 745–758 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mujal, A. M., Delconte, R. B. & Sun, J. C. Natural killer cells: from innate to adaptive features. Annu. Rev. Immunol. 39, 417–447 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Larsen, S. B. et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28, 1758–1774 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vierbuchen, T. et al. AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mol. Cell 68, 1067–1082 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wolf, B. K. et al. Cooperation of chromatin remodeling SWI/SNF complex and pioneer factor AP-1 shapes 3D enhancer landscapes. Nat. Struct. Mol. Biol. 30, 10–21 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Chandra, A. et al. Quantitative control of Ets1 dosage by a multi-enhancer hub promotes TH1 cell differentiation and protects from allergic inflammation. Immunity 56, 1451–1467 (2023).

  103. Pham, D. et al. Batf pioneers the reorganization of chromatin in developing effector T cells via Ets1-dependent recruitment of Ctcf. Cell Rep. 29, 1203–1220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Santosa, E. K., Lau, C. M., Sahin, M., Leslie, C. S. & Sun, J. C. 3D Chromatin dynamics during innate and adaptive immune memory acquisition. Preprint at bioRxiv https://doi.org/10.1101/2023.01.16.524322 (2023).

  105. Gordon, S. M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36, 55–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Roychoudhuri, R. et al. BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nat. Immunol. 17, 851–860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Omilusik, K. D. et al. Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection. J. Exp. Med. 212, 2027–2039 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Xin, A. et al. A molecular threshold for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat. Immunol. 17, 422–432 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang, C. Y. et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat. Immunol. 12, 1221–1229 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. van Helden, M. J. et al. Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J. Exp. Med. 212, 2015–2025 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kallies, A. et al. A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood 117, 1869–1879 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Jeevan-Raj, B. et al. The transcription factor Tcf1 contributes to normal NK cell development and function by limiting the expression of granzymes. Cell Rep. 20, 613–626 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Delconte, R. B. et al. The helix-loop-helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15. Immunity 44, 103–115 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Imianowski, C. J. et al. BACH2 restricts NK cell maturation and function, limiting immunity to cancer metastasis. J. Exp. Med. 219, e20211476 (2022).

  119. Li, S. et al. The transcription factor Bach2 negatively regulates murine natural killer cell maturation and function. eLife 11, e77294 (2022).

  120. Holmes, T. D. et al. The transcription factor Bcl11b promotes both canonical and adaptive NK cell differentiation. Sci. Immunol. 6, eabc9801 (2021).

  121. Kallal, L. E. & Biron, C. A. Changing partners at the dance: variations in STAT concentrations for shaping cytokine function and immune responses to viral infections. JAKSTAT 2, e23504 (2013).

    PubMed  PubMed Central  Google Scholar 

  122. Li, P. et al. BATF–JUN is critical for IRF4-mediated transcription in T cells. Nature 490, 543–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Man, K. et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 14, 1155–1165 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Schraml, B. U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460, 405–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kurachi, M. et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat. Immunol. 15, 373–383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yao, S. et al. Interferon regulatory factor 4 sustains CD8+ T cell expansion and effector differentiation. Immunity 39, 833–845 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Santosa, E. K. et al. Control of nutrient uptake by IRF4 orchestrates innate immune memory. Nat. Immunol. https://doi.org/10.1038/s41590-023-01620-z (2023).

  128. Glasmacher, E. et al. A genomic regulatory element that directs assembly and function of immune-specific AP-1–IRF complexes. Science 338, 975–980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Adams, N. M. et al. Transcription factor IRF8 orchestrates the adaptive natural killer cell response. Immunity 48, 1172–1182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Beaulieu, A. M., Zawislak, C. L., Nakayama, T. & Sun, J. C. The transcription factor Zbtb32 controls the proliferative burst of virus-specific natural killer cells responding to infection. Nat. Immunol. 15, 546–553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rapp, M. et al. Core-binding factor beta and Runx transcription factors promote adaptive natural killer cell responses. Sci. Immunol. 2, eaan3796 (2017).

  132. Cruz-Guilloty, F. et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J. Exp. Med. 206, 51–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, D. et al. The transcription factor Runx3 establishes chromatin accessibility of cis-regulatory landscapes that drive memory cytotoxic T lymphocyte formation. Immunity 48, 659–674 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sun, J. C. & Lanier, L. L. NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat. Rev. Immunol. 11, 645–657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Masopust, D. & Soerens, A. G. Tissue-resident T cells and other resident leukocytes. Annu Rev. Immunol. 37, 521–546 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1hi cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Huang, Y. et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359, 114–119 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Schuster, I. S. et al. Infection induces tissue-resident memory NK cells that safeguard tissue health. Immunity 56, 531–546 e536 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Krmpotic, A., Bubic, I., Polic, B., Lucin, P. & Jonjic, S. Pathogenesis of murine cytomegalovirus infection. Microbes Infect. 5, 1263–1277 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Crough, T. & Khanna, R. Immunobiology of human cytomegalovirus: from bench to bedside. Clin. Microbiol Rev. 22, 76–98 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kirchhammer, N. et al. NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity. Sci. Transl. Med. 14, eabm9043 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Brownlie, D. et al. Expansions of adaptive-like NK cells with a tissue-resident phenotype in human lung and blood. Proc. Natl Acad. Sci. USA 118, e2016580118 (2021).

  147. Berrien-Elliott, M. M. et al. Hematopoietic cell transplantation donor-derived memory-like NK cells functionally persist after transfer into patients with leukemia. Sci. Transl. Med. 14, eabm1375 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Marin, N. D. et al. Memory-like differentiation enhances NK cell responses to melanoma. Clin. Cancer Res. 27, 4859–4869 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Romee, R. et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl. Med. 8, 357ra123 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Cichocki, F. et al. Adaptive NK cell reconstitution is associated with better clinical outcomes. JCI Insight 4, e125553 (2019).

  151. Boudreau, J. E. et al. KIR3DL1/HLA-B subtypes govern acute myelogenous leukemia relapse after hematopoietic cell transplantation. J. Clin. Oncol. 35, 2268–2278 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gauthier, L. et al. Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01626-2 (2023).

  154. Jacquelot, N., Seillet, C., Vivier, E. & Belz, G. T. Innate lymphoid cells and cancer. Nat. Immunol. 23, 371–379 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to all those whose significant and valuable contributions could not be cited or discussed in this manuscript owing to space limitations. We thank members of the Sun lab for helpful feedback on the manuscript. J.C.S. was supported by the Ludwig Center for Cancer Immunotherapy, the American Cancer Society, the Burroughs Wellcome Fund, and the NIH (AI100874, AI130043, AI155558, and P30CA008748).

Author information

Authors and Affiliations

Authors

Contributions

J.C.S. and E.K.S. contributed equally to all aspects of this article.

Corresponding author

Correspondence to Joseph C. Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Jeffrey Miller and the other, anonymous, reviewers for their contribution to the peer review of this work. Primary Handling Editor: Jamie D. K. Wilson, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santosa, E.K., Sun, J.C. Cardinal features of immune memory in innate lymphocytes. Nat Immunol 24, 1803–1812 (2023). https://doi.org/10.1038/s41590-023-01607-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01607-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing