Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defining the role of natural killer cells in COVID-19

Abstract

Natural killer (NK) cells are critical effectors of antiviral immunity. Researchers have therefore sought to characterize the NK cell response to coronavirus disease 2019 (COVID-19) and the virus that causes it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The NK cells of patients with severe COVID-19 undergo extensive phenotypic and functional changes. For example, the NK cells from critically ill patients with COVID-19 are highly activated and exhausted, with poor cytotoxic function and cytokine production upon stimulation. The NK cell response to SARS-CoV-2 is also modulated by changes induced in virally infected cells, including the ability of a viral peptide to bind HLA-E, preventing NK cells from receiving inhibitory signals, and the downregulation of major histocompatibility complex class I and ligands for the activating receptor NKG2D. These changes have important implications for the ability of infected cells to escape NK cell killing. The implications of these findings for antibody-dependent NK cell activity in COVID-19 are also reviewed. Despite these advances in the understanding of the NK cell response to SARS-CoV-2, there remain critical gaps in our current understanding and a wealth of avenues for future research on this topic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in NK cell phenotype induced by severe COVID-19.
Fig. 2: Mechanisms underlying NK cell activation, exhaustion and dysfunction in severe COVID-19.
Fig. 3: Mechanisms of ligand modulation by SARS-CoV-2 in infected cells.
Fig. 4: The two-pronged escape of NK cell killing by SARS-CoV-2.

Similar content being viewed by others

References

  1. Abel, A. M., Yang, C., Thakar, M. S. & Malarkannan, S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Mikulak, J., Oriolo, F., Zaghi, E., Di Vito, C. & Mavilio, D. Natural killer cells in HIV-1 infection and therapy. AIDS 31, 2317–2330 (2017).

    CAS  PubMed  Google Scholar 

  3. Goodier, M. R., Jonjić, S., Riley, E. M. & Juranić Lisnić, V. CMV and natural killer cells: shaping the response to vaccination. Eur. J. Immunol. 48, 50–65 (2018).

    CAS  PubMed  Google Scholar 

  4. Yoon, J. C., Yang, C. M., Song, Y. & Lee, J. M. Natural killer cells in hepatitis C: current progress. World J. Gastroenterol. 22, 1449–1460 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schultz-Cherry, S. Role of NK cells in influenza infection. Curr. Top. Microbiol. Immunol. 386, 109–120 (2015).

    CAS  PubMed  Google Scholar 

  6. Mathew, A. Defining the role of NK cells during dengue virus infection. Immunology 154, 557–562 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Maucourant, C. et al. Natural killer cell immunotypes related to COVID-19 disease severity. Sci. Immunol. 5, eabd6832 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilk, A. J. et al. Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19. J. Exp. Med. 218, e20210582 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Osman, M. et al. Impaired natural killer cell counts and cytolytic activity in patients with severe COVID-19. Blood Adv. 4, 5035–5039 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Varchetta, S. et al. Unique immunological profile in patients with COVID-19. Cell. Mol. Immunol. 18, 604–612 (2021).

    CAS  PubMed  Google Scholar 

  12. Krämer, B. et al. Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity 54, 2650–2669 (2021).

    PubMed  PubMed Central  Google Scholar 

  13. Zheng, M. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 17, 533–535 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Witkowski, M. et al. Untimely TGFβ responses in COVID-19 limit antiviral functions of NK cells. Nature 600, 295–301 (2021).

    CAS  PubMed  Google Scholar 

  15. Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 27, 992–1000 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Koutsakos, M. et al. Integrated immune dynamics define correlates of COVID-19 severity and antibody responses. Cell Rep. Med. 2, 100208 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Carlin, L. E., Hemann, E. A., Zacharias, Z. R., Heusel, J. W. & Legge, K. L. Natural killer cell recruitment to the lung during influenza A virus infection is dependent on CXCR3, CCR5, and virus exposure dose. Front. Immunol. 9, 781 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Natuk, R. J. & Welsh, R. M. Accumulation and chemotaxis of natural killer/large granular lymphocytes at sites of virus replication. J. Immunol. 138, 877–883 (1987).

    CAS  PubMed  Google Scholar 

  19. Thapa, M., Kuziel, W. A. & Carr, D. J. J. Susceptibility of CCR5-deficient mice to genital herpes simplex virus type 2 is linked to NK cell mobilization. J. Virol. 81, 3704–3713 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hokeness, K. L., Kuziel, W. A., Biron, C. A. & Salazar-Mather, T. P. Monocyte chemoattractant protein-1 and CCR2 interactions are required for IFN-alpha/beta-induced inflammatory responses and antiviral defense in liver. J. Immunol. 174, 1549–1556 (2005).

    CAS  PubMed  Google Scholar 

  21. Chen, J. et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J. Virol. 84, 1289–1301 (2010).

    CAS  PubMed  Google Scholar 

  22. Vijayakumar, B. et al. Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity 55, 542–556 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).

    CAS  PubMed  Google Scholar 

  24. Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Brownlie, D. et al. Comparison of lung-homing receptor expression and activation profiles on NK cell and T cell subsets in COVID-19 and influenza. Front. Immunol. 13, 834862 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang, D. et al. Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J. Clin. Invest. 114, 291–299 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Leem, G. et al. Abnormality in the NK-cell population is prolonged in severe COVID-19 patients. J. Allergy Clin. Immunol. 148, 996–1006 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Casado, J. L. et al. Expansion of CD56dimCD16neg NK cell subset and increased inhibitory KIRs in hospitalized COVID-19 patients. Viruses 14, 46 (2021).

    PubMed  PubMed Central  Google Scholar 

  29. Bozzano, F. et al. Extensive activation, tissue trafficking, turnover and functional impairment of NK cells in COVID-19 patients at disease onset associates with subsequent disease severity. PLoS Pathog. 17, e1009448 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsieh, W.-C. et al. NK cell receptor and ligand composition influences the clearance of SARS-CoV-2. J. Clin. Invest. 131, e146408 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanchez-Correa, B. et al. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol. Cell Biol. 90, 109–115 (2012).

    CAS  PubMed  Google Scholar 

  32. Thompson, T. W. et al. Endothelial cells express NKG2D ligands and desensitize antitumor NK responses. Elife 6, e30881 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Cifaldi, L. et al. DNAM-1 activating receptor and its ligands: how do viruses affect the NK cell-mediated immune surveillance during the various phases of Infection? Int. J. Mol. Sci. 20, 3715 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wensveen, F. M., Jelenčić, V. & Polić, B. NKG2D: a master regulator of immune cell responsiveness. Front. Immunol. 9, 441 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    CAS  PubMed  Google Scholar 

  36. Gilfillan, S. et al. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J. Exp. Med. 205, 2965–2973 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    CAS  PubMed  Google Scholar 

  38. Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl Acad. Sci. USA 95, 5199–5204 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    CAS  PubMed  Google Scholar 

  40. Yokoyama, W. M. & Kim, S. Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol. Rev. 214, 143–154 (2006).

    CAS  PubMed  Google Scholar 

  41. Elliott, J. M. & Yokoyama, W. M. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol. 32, 364–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, M. F. & Raulet, D. H. Class I-deficient hemopoietic cells and nonhemopoietic cells dominantly induce unresponsiveness of natural killer cells to class I-deficient bone marrow cell grafts. J. Immunol. 158, 1628–1633 (1997).

    CAS  PubMed  Google Scholar 

  43. Orr, M. T. & Lanier, L. L. Natural killer cell education and tolerance. Cell 142, 847–856 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gasser, S. & Raulet, D. H. Activation and self-tolerance of natural killer cells. Immunol. Rev. 214, 130–142 (2006).

    CAS  PubMed  Google Scholar 

  45. Kim, S. et al. HLA alleles determine differences in human natural killer cell responsiveness and potency. Proc. Natl Acad. Sci. USA 105, 3053–3058 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Campbell, K. S. & Purdy, A. K. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 132, 315–325 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pende, D. et al. Killer Ig-like receptors (KIRs): their role in NK cell modulation and developments leading to their clinical exploitation. Front. Immunol. 10, 1179 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Horowitz, A. et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med. 5, 208ra145 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Naranbhai, V. et al. Killer-cell immunoglobulin-like receptor (KIR) gene profiles modify HIV disease course, not HIV acquisition in South African women. BMC Infect. Dis. 16, 27 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ligotti, M. E. et al. Distribution of KIR genes and their HLA ligands in different viral infectious diseases: frequency study in Sicilian population. Int. J. Mol. Sci. 23, 15466 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Boulet, S. et al. A combined genotype of KIR3DL1 high expressing alleles and HLA-B*57 is associated with a reduced risk of HIV infection. AIDS 22, 1487–1491 (2008).

    CAS  PubMed  Google Scholar 

  52. Martin, M. P. et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat. Genet. 39, 733–740 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Littera, R. et al. Natural killer-cell immunoglobulin-like receptors trigger differences in immune response to SARS-CoV-2 infection. PLoS ONE 16, e0255608 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Saresella, M. et al. NK cell subpopulations and receptor expression in recovering SARS-CoV-2 infection. Mol. Neurobiol. 58, 6111–6120 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bernal, E. et al. Activating killer-cell immunoglobulin-like receptors are associated with the severity of coronavirus disease 2019. J. Infect. Dis. 224, 229–240 (2021).

    CAS  PubMed  Google Scholar 

  56. Tisminetzky, M. et al. Age, multiple chronic conditions, and COVID-19: a literature review. J. Gerontol. A Biol. Sci. Med. Sci. 77, 872–878 (2022).

    CAS  PubMed  Google Scholar 

  57. Romero Starke, K. et al. The isolated effect of age on the risk of COVID-19 severe outcomes: a systematic review with meta-analysis. BMJ Glob. Health 6, e006434 (2021).

    PubMed  Google Scholar 

  58. Lewis, S. A. et al. Differential dynamics of peripheral immune responses to acute SARS-CoV-2 infection in older adults. Nat. Aging 1, 1038–1052 (2021).

    PubMed  Google Scholar 

  59. Fionda, C. et al. Age-dependent NK cell dysfunctions in severe COVID-19 patients. Front. Immunol. 13, 1039120 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hazeldine, J. & Lord, J. M. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res. Rev. 12, 1069–1078 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jeong, S. D. et al. Increased type III interferons and NK cell functions in SARS-CoV-2-infected children. Signal Transduct. Target Ther. 8, 54 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wilson, J. G. et al. Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis. JCI Insight 5, e140289 (2020).

    PubMed  PubMed Central  Google Scholar 

  64. Hu, B., Huang, S. & Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 93, 250–256 (2021).

    CAS  PubMed  Google Scholar 

  65. Huang, W. et al. The inflammatory factors associated with disease severity to predict COVID-19 progression. J. Immunol. 206, 1597–1608 (2021).

    CAS  PubMed  Google Scholar 

  66. Liu, J. et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 55, 102763 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cooper, M. A. et al. Interleukin-1beta costimulates interferon-gamma production by human natural killer cells. Eur. J. Immunol. 31, 792–801 (2001).

    CAS  PubMed  Google Scholar 

  69. Cifaldi, L. et al. Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol. 67, 3037–3046 (2015).

    CAS  PubMed  Google Scholar 

  70. Yu, Y., Luo, X., Liu, S., Xie, Y. & Cao, X. Intratumoral expression of MIP-1b induces antitumor responses in a pre-established tumor model through chemoattracting T cells and NK cells. Blood 104, 5268–5268 (2004).

    Google Scholar 

  71. Mocellin, S. et al. IL-10 stimulatory effects on human NK cells explored by gene profile analysis. Genes Immun. 5, 621–630 (2004).

    CAS  PubMed  Google Scholar 

  72. Wang, K. S., Frank, D. A. & Ritz, J. Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood 95, 3183–3190 (2000).

    CAS  PubMed  Google Scholar 

  73. Wu, J. et al. IL-6 and IL-8 secreted by tumour cells impair the function of NK cells via the STAT3 pathway in oesophageal squamous cell carcinoma. J. Exp. Clin. Cancer Res. 38, 321 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Wang, Z. et al. Elevated interferon-γ-induced protein 10 and its receptor CXCR3 impair NK cell function during HIV infection. J. Leukoc. Biol. 102, 163–170 (2017).

    CAS  PubMed  Google Scholar 

  75. Pilaro, A. M. et al. TNF-alpha is a principal cytokine involved in the recruitment of NK cells to liver parenchyma. J. Immunol. 153, 333–342 (1994).

    CAS  PubMed  Google Scholar 

  76. Aquino-López, A., Senyukov, V. V., Vlasic, Z., Kleinerman, E. S. & Lee, D. A. Interferon gamma induces changes in natural killer (NK) cell ligand expression and alters NK cell-mediated lysis of pediatric cancer cell lines. Front. Immunol. 8, 391 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Huang, C. & Bi, J. Expression regulation and function of T-Bet in NK cells. Front. Immunol. 12, 761920 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Michel, T., Hentges, F. & Zimmer, J. Consequences of the cross-talk between monocytes/macrophages and natural killer cells. Front. Immunol. 3, 403 (2012).

    PubMed  Google Scholar 

  79. Molfetta, R., Quatrini, L., Santoni, A. & Paolini, R. Regulation of NKG2D-dependent NK cell functions: the Yin and the Yang of receptor endocytosis. Int. J. Mol. Sci. 18, 1677 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Hammer, Q. et al. SARS-CoV-2 Nsp13 encodes for an HLA-E-stabilizing peptide that abrogates inhibition of NKG2A-expressing NK cells. Cell Rep. 38, 110503 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, M. J. et al. SARS-CoV-2 escapes direct NK cell killing through Nsp1-mediated downregulation of ligands for NKG2D. Cell Rep. 41, 111892 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fielding, C. A. et al. SARS-CoV-2 host-shutoff impacts innate NK cell functions, but antibody-dependent NK activity is strongly activated through non-spike antibodies. Elife 11, e74489 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cohen, G. B. et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671 (1999).

    CAS  PubMed  Google Scholar 

  84. Eisfeld, A. J., Yee, M. B., Erazo, A., Abendroth, A. & Kinchington, P. R. Downregulation of class I major histocompatibility complex surface expression by varicella-zoster virus involves open reading frame 66 protein kinase-dependent and -independent mechanisms. J. Virol. 81, 9034–9049 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Koutsakos, M. et al. Downregulation of MHC class I expression by influenza A and B viruses. Front. Immunol. 10, 1158 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gabor, F., Jahn, G., Sedmak, D. D. & Sinzger, C. In vivo downregulation of MHC class I molecules by HCMV occurs during all phases of viral replication but is not always complete. Front. Cell. Infect. Microbiol. 10, 283 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ljunggren, H. G. & Kärre, K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    CAS  PubMed  Google Scholar 

  88. Kärre, K. Natural killer cell recognition of missing self. Nat. Immunol. 9, 477–480 (2008).

    PubMed  Google Scholar 

  89. Zhang, Y. et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through downregulating MHC-Ι. Proc. Natl Acad. Sci. USA 118, e2024202118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yoo, J.-S. et al. SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1–IRF1–NLRC5 axis. Nat. Commun. 12, 6602 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Arshad, N. et al. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to downregulate MHC-I surface expression. Proc. Natl Acad. Sci. USA 120, e2208525120 (2023).

    CAS  PubMed  Google Scholar 

  92. Moriyama, M., Lucas, C. & Monteiro, V. S. Yale SARS-CoV-2 Genomic Surveillance Initiative & Iwasaki, A. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proc. Natl Acad. Sci. USA 120, e2221652120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bortolotti, D., Gentili, V., Rizzo, S., Rotola, A. & Rizzo, R. SARS-CoV-2 spike 1 protein controls natural killer cell activation via the HLA-E–NKG2A pathway. Cells 9, 1975 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Davis, Z. B. et al. A conserved HIV-1-derived peptide presented by HLA-E renders infected T cells highly susceptible to attack by NKG2A/CD94-bearing natural killer cells. PLoS Pathog. 12, e1005421 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Mbiribindi, B. et al. Epstein–Barr virus peptides derived from latent cycle proteins alter NKG2A + NK cell effector function. Sci. Rep. 10, 19973 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Barrow, A. D. & Colonna, M. Exploiting NK cell surveillance pathways for cancer therapy. Cancers 11, 55 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Slavuljica, I., Krmpotić, A. & Jonjić, S. Manipulation of NKG2D ligands by cytomegaloviruses: impact on innate and adaptive immune response. Front. Immunol. 2, 85 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. Welte, S. A. et al. Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur. J. Immunol. 33, 194–203 (2003).

    CAS  PubMed  Google Scholar 

  100. Ward, J. et al. HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T-cell blasts. Blood 110, 1207–1214 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zingoni, A. et al. NKG2D and its ligands: ‘one for all, all for one’. Front. Immunol. 9, 476 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. Min, Y.-Q. et al. SARS-CoV-2 nsp1: bioinformatics, potential structural and functional features, and implications for drug/vaccine designs. Front. Microbiol. 11, 587317 (2020).

    PubMed  PubMed Central  Google Scholar 

  103. Afsar, M. et al. Drug targeting Nsp1-ribosomal complex shows antiviral activity against SARS-CoV-2. Elife 11, 587317 (2022).

    Google Scholar 

  104. Schubert, K. et al. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat. Struct. Mol. Biol. 27, 959–966 (2020).

    CAS  PubMed  Google Scholar 

  105. Vora, S. M. et al. Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion. Proc. Natl Acad. Sci. USA 119, e2117198119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Toledano, T., Vitenshtein, A., Stern-Ginossar, N., Seidel, E. & Mandelboim, O. Decay of the stress-induced ligand MICA is controlled by the expression of an alternative 3′ untranslated region. J. Immunol. 200, 2819–2825 (2018).

    CAS  PubMed  Google Scholar 

  107. Fernández-Messina, L., Reyburn, H. T. & Valés-Gómez, M. A short half-life of ULBP1 at the cell surface due to internalization and proteosomal degradation. Immunol. Cell Biol. 94, 479–485 (2016).

    PubMed  Google Scholar 

  108. Banu, N. et al. B7-H6, an immunoligand for the natural killer cell activating receptor NKp30, reveals inhibitory effects on cell proliferation and migration, but not apoptosis, in cervical cancer derived-cell lines. BMC Cancer 20, 1083 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sanchez-Correa, B. et al. DNAM-1 and the TIGIT–PVRIG–TACTILE axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers 11, 877 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Rieke, G. J. et al. Natural killer cell-mediated antibody-dependent cellular cytotoxicity against SARS-CoV-2 after natural infection is more potent than after vaccination. J. Infect. Dis. 225, 1688–1693 (2022).

    CAS  PubMed  Google Scholar 

  111. Ullah, I. et al. Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity 54, 2143–2158 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Georg, P. et al. Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell 185, 493–512 (2022).

    CAS  PubMed  Google Scholar 

  113. Orange, J. S. Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect. 4, 1545–1558 (2002).

    CAS  PubMed  Google Scholar 

  114. Clayton, K. L. et al. HIV-infected macrophages resist efficient NK cell-mediated killing while preserving inflammatory cytokine responses. Cell Host Microbe 29, 435–447 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kurane, I., Hebblewaite, D., Brandt, W. E. & Ennis, F. A. Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J. Virol. 52, 223–230 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Glasner, A. et al. Zika virus escapes NK cell detection by upregulating major histocompatibility complex class I molecules. J. Virol. 91, e00785–17 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Charpak-Amikam, Y. et al. Human cytomegalovirus escapes immune recognition by NK cells through the downregulation of B7-H6 by the viral genes US18 and US20. Sci. Rep. 7, 8661 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. Wen, C. et al. Hepatitis C virus infection downregulates the ligands of the activating receptor NKG2D. Cell. Mol. Immunol. 5, 475–478 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Thomas, M. et al. Downregulation of NKG2D and NKp80 ligands by Kaposi’s sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc. Natl Acad. Sci. USA 105, 1656–1661 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Vendrame, E. et al. Profiling of the human natural killer cell receptor–ligand repertoire. J. Vis. Exp. https://doi.org/10.3791/61912 (2020).

  121. Agarwal, R., Elbishbishi, E. A., Chaturvedi, U. C., Nagar, R. & Mustafa, A. S. Profile of transforming growth factor-beta 1 in patients with dengue haemorrhagic fever. Int. J. Exp. Pathol. 80, 143–149 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Denney, L., Branchett, W., Gregory, L. G., Oliver, R. A. & Lloyd, C. M. Epithelial-derived TGF-β1 acts as a pro-viral factor in the lung during influenza A infection. Mucosal Immunol. 11, 523–535 (2018).

    CAS  PubMed  Google Scholar 

  123. Dickinson, M. et al. Dynamics of transforming growth factor (TGF)-β superfamily cytokine induction during HIV-1 infection are distinct from other innate cytokines. Front. Immunol. 11, 596841 (2020).

    PubMed  PubMed Central  Google Scholar 

  124. Scully, E. & Alter, G. NK cells in HIV disease. Curr. HIV/AIDS Rep. 13, 85–94 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. Alter, G. et al. HIV-1 adaptation to NK cell-mediated immune pressure. Nature 476, 96–100 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for C.A.B. was provided by the Burroughs Wellcome Fund, 1016687; the National Institute of Allergy and Infectious Diseases (NIAID), U19AI057229; the Bill and Melinda Gates Foundation, OPP1113682; and the Chan Zuckerberg Biohub Investigator Award. Funding for M.J.L. was provided by the National Institute of Allergy and Infectious Diseases (NIAID), 1F31AI172319-01.

Author information

Authors and Affiliations

Authors

Contributions

M.J.L. and C.A.B. conceived and wrote the manuscript.

Corresponding author

Correspondence to Catherine A. Blish.

Ethics declarations

Competing interests

C.A.B. reports compensation for consulting and/or SAB membership from Catamaran Bio, DeepCell, Immunebridge, Sangamo Therapeutics and Bicycle Tx on topics unrelated to this review. M.J.L. declares no competing interests.

Peer review

Peer review information

Nature Immunology thanks Timothy O’Sullivan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: L. A. Dempsey, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.J., Blish, C.A. Defining the role of natural killer cells in COVID-19. Nat Immunol 24, 1628–1638 (2023). https://doi.org/10.1038/s41590-023-01560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01560-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing