Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early-life respiratory infections and developmental immunity determine lifelong lung health

Abstract

Respiratory infections are common in infants and young children. However, the immune system develops and matures as the child grows, thus the effects of infection during this time of dynamic change may have long-term consequences. The infant immune system develops in conjunction with the seeding of the microbiome at the respiratory mucosal surface, at a time that the lungs themselves are maturing. We are now recognizing that any disturbance of this developmental trajectory can have implications for lifelong lung health. Here, we outline our current understanding of the molecular mechanisms underlying relationships between immune and structural cells in the lung with the local microorganisms. We highlight the importance of gaining greater clarity as to what constitutes a healthy respiratory ecosystem and how environmental exposures influencing this network will aid efforts to mitigate harmful effects and restore lung immune health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lung function trajectories from birth to adulthood.
Fig. 2: Microbial communities colonize distinct areas of the respiratory tract in health and disease.
Fig. 3: Pulmonary immunity and microbiome are influenced by a range of intrinsic and extrinsic factors.
Fig. 4: Interactions between early-life respiratory infections, environmental exposures, host immune responses and lifelong lung health.

Similar content being viewed by others

References

  1. Narayanan, M. et al. Alveolarization continues during childhood and adolescence: new evidence from helium-3 magnetic resonance. Am. J. Respir. Crit. Care Med. 185, 186–191 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lloyd, C. M. & Saglani, S. Opening the window of immune opportunity: treating childhood asthma. Trends Immunol. 40, 786–798 (2019).

    CAS  PubMed  Google Scholar 

  3. Bosch, A. et al. Maturation of the infant respiratory microbiota, environmental drivers, and health consequences. A prospective cohort study. Am. J. Respir. Crit. Care Med 196, 1582–1590 (2017).

    PubMed  Google Scholar 

  4. Sandall, J. et al. Short-term and long-term effects of caesarean section on the health of women and children. Lancet 392, 1349–1357 (2018).

    PubMed  Google Scholar 

  5. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Russell, S. L. et al. Early-life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13, 440–447 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Achten, N. B., van Rossum, A. M. C., Bacharier, L. B., Fitzpatrick, A. M. & Hartert, T. V. Long-term respiratory consequences of early-life respiratory viral infections: a pragmatic approach to fundamental questions. J. Allergy Clin. Immunol. Pract. 10, 664–670 (2022).

    PubMed  Google Scholar 

  8. Shi, T. et al. Risk factors for respiratory syncytial virus associated with acute lower respiratory infection in children under five years: systematic review and meta-analysis. J. Glob. Health 5, 020416 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Stenberg-Hammar, K. et al. Rhinovirus-specific antibody responses in preschool children with acute wheeze reflect severity of respiratory symptoms. Allergy 71, 1728–1735 (2016).

    CAS  PubMed  Google Scholar 

  10. Oksel, C. et al. Distinguishing wheezing phenotypes from infancy to adolescence. A pooled analysis of five birth cohorts. Ann. Am. Thorac. Soc. 16, 868–876 (2019).

    PubMed  PubMed Central  Google Scholar 

  11. van Meel, E. R. et al. Early-life respiratory tract infections and the risk of school-age lower lung function and asthma: a meta-analysis of 150,000 European children. Eur. Respir. J. 60, 2102395 (2022).

    PubMed  PubMed Central  Google Scholar 

  12. Bose, S., Pascoe, C. & McEvoy, C. Lifetime lung function trajectories and COPD: when the train derails. Lancet Respir. Med. 11, 221–222 (2022).

    PubMed  Google Scholar 

  13. Zar, H. J. et al. Early-life respiratory syncytial virus lower respiratory tract infection in a South African birth cohort: epidemiology and effect on lung health. Lancet Glob. Health 8, e1316–e1325 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Belgrave, D. C. M. et al. Lung function trajectories from pre-school age to adulthood and their associations with early life factors: a retrospective analysis of three population-based birth cohort studies. Lancet Respir. Med. 6, 526–534 (2018).

    PubMed  Google Scholar 

  15. Berry, C. E. et al. A distinct low lung function trajectory from childhood to the fourth decade of life. Am. J. Respir. Crit. Care Med. 194, 607–612 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Agustí, A., Noell, G., Brugada, J. & Faner, R. Lung function in early adulthood and health in later life: a transgenerational cohort analysis. Lancet Respir. Med. 5, 935–945 (2017).

    PubMed  Google Scholar 

  17. Olin, A. et al. Stereotypic immune system development in newborn children. Cell 174, 1277–1292 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ariyakumar, G. et al. Activation of lymphocytes in healthy neonates within hours of birth. Front. Immunol. 13, 883933 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, A. H. et al. Dynamic molecular changes during the first week of human life follow a robust developmental trajectory. Nat. Commun. 10, 1092 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. Thome, J. J. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Thome, J. J. et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 22, 72–77 (2016).

    CAS  PubMed  Google Scholar 

  22. Ifrim, D. C. et al. Trained immunity or tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clin. Vaccin. Immunol. 21, 534–545 (2014).

    Google Scholar 

  23. Hinks, T. S. et al. Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms. J. Allergy Clin. Immunol. 136, 323–333 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. van Wilgenburg, B. et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat. Commun. 9, 4706 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Levy, O. & Netea, M. G. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines. Pediatr. Res. 75, 184–188 (2014).

    CAS  PubMed  Google Scholar 

  26. de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. de Steenhuijsen Piters, W. A. A., Binkowska, J. & Bogaert, D. Early life microbiota and respiratory tract infections. Cell Host Microbe 28, 223–232 (2020).

    PubMed  Google Scholar 

  29. Pattaroni, C. et al. Early-life formation of the microbial and immunological environment of the human airways. Cell Host Microbe 24, 857–865 (2018).

    CAS  PubMed  Google Scholar 

  30. Stearns, J. C. et al. Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISME J. 9, 1246–1259 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Pattaroni, C. et al. Early life inter-kingdom interactions shape the immunological environment of the airways. Microbiome 10, 34 (2022).

    PubMed  PubMed Central  Google Scholar 

  32. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    CAS  PubMed  Google Scholar 

  33. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    CAS  PubMed  Google Scholar 

  34. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Segal, L. N. et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a TH17 phenotype. Nat. Microbiol. 1, 16031 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Thorsen, J. et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma. Nat. Commun. 10, 5001 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Natalini, J. G., Singh, S. & Segal, L. N. The dynamic lung microbiome in health and disease. Nat. Rev. Microbiol. 21, 222–235 (2022).

    PubMed  PubMed Central  Google Scholar 

  38. Brunwasser, S. M. et al. Assessing the strength of evidence for a causal effect of respiratory syncytial virus lower respiratory tract infections on subsequent wheezing illness: a systematic review and meta-analysis. Lancet Respir. Med. 8, 795–806 (2020).

    PubMed  PubMed Central  Google Scholar 

  39. Man, W. H. et al. Infant respiratory syncytial virus prophylaxis and nasopharyngeal microbiota until 6 years of life: a subanalysis of the MAKI randomised controlled trial. Lancet Respir. Med. 8, 1022–1031 (2020).

    CAS  PubMed  Google Scholar 

  40. Tang, H. H. F. et al. Developmental patterns in the nasopharyngeal microbiome during infancy are associated with asthma risk. J. Allergy Clin. Immunol. 147, 1683–1691 (2021).

    CAS  PubMed  Google Scholar 

  41. Zuurbier, R. P. et al. Asymptomatic viral presence in early life precedes recurrence of respiratory tract infections. Pediatr. Infect. Dis. J. 42, 59–65 (2023).

    PubMed  Google Scholar 

  42. Jackson, D. J. & Gern, J. E. Rhinovirus infections and their roles in asthma: etiology and exacerbations. J. Allergy Clin. Immunol. Pract. 10, 673–681 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi, T. et al. Enhanced neutralizing antibody responses to Rhinovirus C and age-dependent patterns of infection. Am. J. Respir. Crit. Care Med. 203, 822–830 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Calışkan, M. et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N. Engl. J. Med. 368, 1398–1407 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Loss, G. J. et al. The early development of wheeze. Environmental determinants and genetic susceptibility at 17q21. Am. J. Respir. Crit. Care Med. 193, 889–897 (2016).

    PubMed  Google Scholar 

  46. Bønnelykke, K. et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat. Genet. 46, 51–55 (2014).

    PubMed  Google Scholar 

  47. Edwards, M. R. et al. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol. 6, 797–806 (2013).

    CAS  PubMed  Google Scholar 

  48. Altman, M. C. et al. Transcriptome networks identify mechanisms of viral and nonviral asthma exacerbations in children. Nat. Immunol. 20, 637–651 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dissanayake, E. et al. Rhinovirus increases Moraxella catarrhalis adhesion to the respiratory epithelium. Front. Cell Infect. Microbiol. 12, 1060748 (2022).

    CAS  PubMed  Google Scholar 

  50. Hasegawa, K. et al. Association of nasopharyngeal microbiota profiles with bronchiolitis severity in infants hospitalised for bronchiolitis. Eur. Respir. J. 48, 1329–1339 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Raita, Y. et al. Integrated-omics endotyping of infants with rhinovirus bronchiolitis and risk of childhood asthma. J. Allergy Clin. Immunol. 147, 2108–2117 (2021).

    CAS  PubMed  Google Scholar 

  52. Raita, Y. et al. Integrated omics endotyping of infants with respiratory syncytial virus bronchiolitis and risk of childhood asthma. Nat. Commun. 12, 3601 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bisgaard, H. et al. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 357, 1487–1495 (2007).

    CAS  PubMed  Google Scholar 

  54. Robinson, P. F. M. et al. Recurrent severe preschool wheeze: from prespecified diagnostic labels to underlying endotypes. Am. J. Respir. Crit. Care Med. 204, 523–535 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ahmed, B. et al. Comparison of the upper and lower airway microbiota in children with chronic lung diseases. PLoS ONE 13, e0201156 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hrusch, C. L. et al. T cell phenotypes are associated with serum IgE levels in Amish and Hutterite children. J. Allergy Clin. Immunol. 144, 1391–1401 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Illi, S. et al. Protection from childhood asthma and allergy in Alpine farm environments—the GABRIEL Advanced Studies. J. Allergy Clin. Immunol. 129, 1470–1477 (2012).

    PubMed  Google Scholar 

  59. Depner, M. et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat. Med. 26, 1766–1775 (2020).

    CAS  PubMed  Google Scholar 

  60. Manolova, V., Flace, A., Jeandet, P., Bessler, W. & Pasquali, C. Biomarkers induced by the immunomodulatory bacterial extract OM-85: unique roles for Peyer’s patches and intestinal epithelial cells. J. Clin. Cell. Immunol. 8, 2 (2017).

    Google Scholar 

  61. Nelson, H. S. The return of the mixed respiratory bacterial vaccine. Allergy Asthma Proc. 43, 501–508 (2022).

    PubMed  Google Scholar 

  62. Ballarini, S. et al. Can bacterial lysates be useful in prevention of viral respiratory infections in childhood? The results of experimental OM-85 studies. Front. Pediatr. 10, 1051079 (2022).

    PubMed  PubMed Central  Google Scholar 

  63. Roth, M., Pasquali, C., Stolz, D. & Tamm, M. Broncho Vaxom (OM-85) modulates rhinovirus docking proteins on human airway epithelial cells via Erk1/2 mitogen activated protein kinase and cAMP. PLoS ONE 12, e0188010 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Brandi, P. et al. Trained immunity induction by the inactivated mucosal vaccine MV130 protects against experimental viral respiratory infections. Cell Rep. 38, 110184 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chotirmall, S. H. et al. Therapeutic targeting of the respiratory microbiome. Am. J. Respir. Crit. Care Med. 206, 535–544 (2022).

    PubMed  Google Scholar 

  66. Koenen, M. H., de Steenhuijsen Piters, W. A. A., Bogaert, D. & Verhagen, L. M. The microbiota in respiratory tract infections: from association to intervention. Curr. Opin. Infect. Dis. 35, 215–222 (2022).

    CAS  PubMed  Google Scholar 

  67. Dharmage, S. C. et al. Lifetime spirometry patterns of obstruction and restriction, and their risk factors and outcomes: a prospective cohort study. Lancet Respir. Med. 11, 273–282 (2023).

    PubMed  Google Scholar 

  68. McEvoy, C. T., Le Souef, P. N. & Martinez, F. D. The role of lung function in determining which children develop asthma. J. Allergy Clin. Immunol. Pract. 11, 677–683 (2023).

    PubMed  Google Scholar 

Download references

Acknowledgements

C.M.L. is supported by the Wellcome Trust (220254/Z/20/Z). S.S. is supported by the National Institute of Health Research Efficacy and Mechanism Evaluation program (17/60/51). Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

C.M.L. and S.S. contributed equally to this Review.

Corresponding authors

Correspondence to Clare M. Lloyd or Sejal Saglani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Jamie D. K. Wilson, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloyd, C.M., Saglani, S. Early-life respiratory infections and developmental immunity determine lifelong lung health. Nat Immunol 24, 1234–1243 (2023). https://doi.org/10.1038/s41590-023-01550-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01550-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing