Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human circulating and tissue-resident memory CD8+ T cells

An Author Correction to this article was published on 17 July 2023

This article has been updated

Abstract

Our current knowledge of human memory CD8+ T cells is derived largely from studies of the intravascular space. However, emerging data are starting to challenge some of the dogmas based on this work, suggesting that a conceptual revision may be necessary. In this review, we provide a brief history of the field and summarize the biology of circulating and tissue-resident memory CD8+ T cells, which are ultimately responsible for effective immune surveillance. We also incorporate recent findings into a biologically integrated model of human memory CD8+ T cell differentiation. Finally, we address how future innovative human studies could improve our understanding of anatomically localized CD8+ T cells to inform the development of more effective immunotherapies and vaccines, the need for which has been emphasized by the global struggle to contain severe acute respiratory syndrome coronavirus 2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneity of CD8+ TEM cells.
Fig. 2: Characteristics of CD8+ TRM cells.
Fig. 3: Classification of memory CD8+ T cell subsets in humans.

Similar content being viewed by others

Change history

References

  1. Appay, V., van Lier, R. A., Sallusto, F. & Roederer, M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73, 975–983 (2008).

    Article  PubMed  Google Scholar 

  2. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2, 415–422 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laidlaw, B. J., Craft, J. E. & Kaech, S. M. The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nat. Rev. Immunol. 16, 102–111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bousso, P. T cell activation by dendritic cells in the lymph node: lessons from the movies. Nat. Rev. Immunol. 8, 675–684 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Neefjes, J., Jongsma, M. L., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Jameson, S. C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akondy, R. S. et al. Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination. Proc. Natl Acad. Sci. USA 112, 3050–3055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blom, K. et al. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response. J. Immunol. 190, 2150–2158 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Miller, J. D. et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28, 710–722 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Blom, K. et al. Specificity and dynamics of effector and memory CD8 T cell responses in human tick-borne encephalitis virus infection. PLoS Pathog. 11, e1004622 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Demers, K. R. et al. Temporal dynamics of CD8+ T cell effector responses during primary HIV infection. PLoS Pathog. 12, e1005805 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kurktschiev, P. D. et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J. Exp. Med. 211, 2047–2059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Odumade, O. A. et al. Primary Epstein–Barr virus infection does not erode preexisting CD8+ T cell memory in humans. J. Exp. Med. 209, 471–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sekine, T. et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 183, 158–168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Gowans, J. L. The effect of the continuous re-infusion of lymph and lymphocytes on the output of lymphocytes from the thoracic duct of unanaesthetized rats. Br. J. Exp. Pathol. 38, 67–78 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gowans, J. L. The recirculation of lymphocytes from blood to lymph in the rat. J. Physiol. 146, 54–69 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gowans, J. L. & Knight, E. J. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond. B Biol. Sci. 159, 257–282 (1964).

    Article  CAS  PubMed  Google Scholar 

  21. Mackay, C. R., Kimpton, W. G., Brandon, M. R. & Cahill, R. N. Lymphocyte subsets show marked differences in their distribution between blood and the afferent and efferent lymph of peripheral lymph nodes. J. Exp. Med. 167, 1755–1765 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Mackay, C. R., Marston, W. L. & Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171, 801–817 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Mackay, C. R. et al. Tissue-specific migration pathways by phenotypically distinct subpopulations of memory T cells. Eur. J. Immunol. 22, 887–895 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Maddox, J. F., Mackay, C. R. & Brandon, M. R. Surface antigens, SBU-T4 and SBU-T8, of sheep T lymphocyte subsets defined by monoclonal antibodies. Immunology 55, 739–748 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Berg, E. L., McEvoy, L. M., Berlin, C., Bargatze, R. F. & Butcher, E. C. L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature 366, 695–698 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Sallusto, F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Spertini, O., Kansas, G. S., Munro, J. M., Griffin, J. D. & Tedder, T. F. Regulation of leukocyte migration by activation of the leukocyte adhesion molecule-1 (LAM-1) selectin. Nature 349, 691–694 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Tedder, T. F. et al. Isolation and chromosomal localization of cDNAs encoding a novel human lymphocyte cell surface molecule, LAM-1. Homology with the mouse lymphocyte homing receptor and other human adhesion proteins. J. Exp. Med. 170, 123–133 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida, R. et al. Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J. Biol. Chem. 272, 13803–13809 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. De Rosa, S. C., Herzenberg, L. A., Herzenberg, L. A. & Roederer, M. 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T cell receptor diversity. Nat. Med. 7, 245–248 (2001).

    Article  PubMed  Google Scholar 

  32. Giorgi, J. V. Characterization of T lymphocyte subset alterations by flow cytometry in HIV disease. Ann. N. Y. Acad. Sci. 677, 126–137 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407–1418 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Waldrop, S. L., Pitcher, C. J., Peterson, D. M., Maino, V. C. & Picker, L. J. Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J. Clin. Invest. 99, 1739–1750 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reiner, S. L. & Adams, W. C. Lymphocyte fate specification as a deterministic but highly plastic process. Nat. Rev. Immunol. 14, 699–704 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Buggert, M. et al. The identity of human tissue-emigrant CD8+ T cells. Cell 183, 1946–1961 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mold, J. E. et al. Divergent clonal differentiation trajectories establish CD8+ memory T cell heterogeneity during acute viral infections in humans. Cell Rep. 35, 109174 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Saule, P. et al. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4+ versus effector memory and terminally differentiated memory cells in CD8+ compartment. Mech. Ageing Dev. 127, 274–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Sekine, T. et al. TOX is expressed by exhausted and polyfunctional human effector memory CD8+ T cells. Sci. Immunol. 5, eaba7918 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Galletti, G. et al. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 21, 1552–1562 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Catalina, M. D., Sullivan, J. L., Brody, R. M. & Luzuriaga, K. Phenotypic and functional heterogeneity of EBV epitope-specific CD8+ T cells. J. Immunol. 168, 4184–4191 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Ndhlovu, Z. M. et al. Elite controllers with low to absent effector CD8+ T cell responses maintain highly functional, broadly directed central memory responses. J. Virol. 86, 6959–6969 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rutishauser, R. L. et al. TCF-1 regulates HIV-specific CD8+ T cell expansion capacity. JCI Insight 6, e136648 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Costa Del Amo, P. et al. Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness. PLoS Biol. 16, e2005523 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ahmed, R. et al. Human stem cell-like memory T cells are maintained in a state of dynamic flux. Cell Rep. 17, 2811–2818 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adamo, S. et al. Signature of long-lived memory CD8+ T cells in acute SARS-CoV-2 infection. Nature 602, 148–155 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Fuertes Marraco, S. A. et al. Long-lasting stem cell-like memory CD8+ T cells with a naive-like profile upon yellow fever vaccination. Sci. Transl. Med. 7, 282ra248 (2015).

    Article  Google Scholar 

  56. Martin, M. D. & Badovinac, V. P. Defining memory CD8 T cell. Front. Immunol. 9, 2692 (2018).

  57. Gao, Y. et al. Immunodeficiency syndromes differentially impact the functional profile of SARS-CoV-2-specific T cells elicited by mRNA vaccination. Immunity 55, 1732–1746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahmed, R. et al. CD57+ memory T cells proliferate in vivo. Cell Rep. 33, 108501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gerlach, C. et al. The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45, 1270–1284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bottcher, J. P. et al. Functional classification of memory CD8+ T cells by CX3CR1 expression. Nat. Commun. 6, 8306 (2015).

    Article  PubMed  Google Scholar 

  61. Friedman, H. M., Macarak, E. J., MacGregor, R. R., Wolfe, J. & Kefalides, N. A. Virus infection of endothelial cells. J. Infect. Dis. 143, 266–273 (1981).

    Article  CAS  PubMed  Google Scholar 

  62. Valbuena, G. & Walker, D. H. The endothelium as a target for infections. Annu. Rev. Pathol. 1, 171–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Jarvis, M. A. & Nelson, J. A. Human cytomegalovirus tropism for endothelial cells: not all endothelial cells are created equal. J. Virol. 81, 2095–2101 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Gordon, C. L. et al. Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection. J. Exp. Med. 214, 651–667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Buggert, M. et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 10, e1004251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Guidotti, L. G. et al. Immunosurveillance of the liver by intravascular effector CD8+ T cells. Cell 161, 486–500 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Boschetti, G. et al. Enrichment of circulating and mucosal cytotoxic CD8+ T cells is associated with postoperative endoscopic recurrence in patients with Crohn’s disease. J. Crohns Colitis 10, 338–345 (2016).

    Article  PubMed  Google Scholar 

  68. Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nguyen, S. et al. Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8+ T cells. Sci. Transl. Med. 11, eaax4077 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reuter, M. A. et al. HIV-specific CD8+ T cells exhibit reduced and differentially regulated cytolytic activity in lymphoid tissue. Cell Rep. 21, 3458–3470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Strioga, M., Pasukoniene, V. & Characiejus, D. CD8+ CD28 and CD8+ CD57+ T cells and their role in health and disease. Immunology 134, 17–32 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Buggert, M. et al. Identification and characterization of HIV-specific resident memory CD8+ T cells in human lymphoid tissue. Sci. Immunol. 3, eaar4526 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Klonowski, K. D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Boyman, O. et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J. Exp. Med. 199, 731–736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue-resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Clark, R. A. et al. A novel method for the isolation of skin resident T cells from normal and diseased human skin. J. Invest. Dermatol. 126, 1059–1070 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Booth, J. S. et al. Characterization and functional properties of gastric tissue-resident memory T cells from children, adults, and the elderly. Front. Immunol. 5, 294 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Okhrimenko, A. et al. Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proc. Natl Acad. Sci. USA 111, 9229–9234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Turner, D. L. et al. Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol. 7, 501–510 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Transl. Med. 4, 117ra117 (2012).

    Article  Google Scholar 

  86. Watanabe, R. et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med. 7, 279ra239 (2015).

    Article  Google Scholar 

  87. Shiow, L. R. et al. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Bartolome-Casado, R. et al. Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med. 216, 2412–2426 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lian, C. G. et al. Biomarker evaluation of face transplant rejection: association of donor T cells with target cell injury. Mod. Pathol. 27, 788–799 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Snyder, M. E. et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 4, eaav5581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zuber, J. et al. Bidirectional intragraft alloreactivity drives the repopulation of human intestinal allografts and correlates with clinical outcome. Sci. Immunol. 1, eaah3732 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Divito, S. J. et al. Peripheral host T cells survive hematopoietic stem cell transplantation and promote graft-versus-host disease. J. Clin. Invest. 130, 4624–4636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Strobl, J. et al. Long-term skin-resident memory T cells proliferate in situ and are involved in human graft-versus-host disease. Sci. Transl. Med. 12, eabb7028 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Thome, J. J. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thome, J. J. et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 22, 72–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Gordon, S. & Pluddemann, A. Tissue macrophages: heterogeneity and functions. BMC Biol. 15, 53 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Poon, M. M. L. et al. Tissue adaptation and clonal segregation of human memory T cells in barrier sites. Nat. Immunol. 24, 309–319 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, Z. et al. PD-1hi CD8+ resident memory T cells balance immunity and fibrotic sequelae. Sci. Immunol. 4, eaaw1217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shi, F. et al. PD-1 and PD-L1 upregulation promotes CD8+ T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int. J. Cancer 128, 887–896 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Heim, K. et al. TOX defines the degree of CD8+ T cell dysfunction in distinct phases of chronic HBV infection. Gut 70, 1550–1560 (2020).

    Article  PubMed  Google Scholar 

  105. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dornieden, T. et al. Signatures and specificity of tissue-resident lymphocytes identified in human renal peritumor and tumor tissue. J. Am. Soc. Nephrol. 32, 2223–2241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kurd, N. S. et al. Early precursors and molecular determinants of tissue-resident memory CD8+ T lymphocytes revealed by single-cell RNA sequencing. Sci. Immunol. 5, eaaz6894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hombrink, P. et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 17, 1467–1478 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Oja, A. E. et al. Trigger-happy resident memory CD4+ T cells inhabit the human lungs. Mucosal Immunol. 11, 654–667 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cepek, K. L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature 372, 190–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Weisberg, S. P. et al. Tissue-resident memory T cells mediate immune homeostasis in the human pancreas through the PD-1/PD-L1 pathway. Cell Rep. 29, 3916–3932 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Beura, L. K. et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 48, 327–338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Christo, S. N. et al. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nat. Immunol. 22, 1140–1151 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Fonseca, R. et al. Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat. Immunol. 21, 412–421 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McFarland, R. D., Douek, D. C., Koup, R. A. & Picker, L. J. Identification of a human recent thymic emigrant phenotype. Proc. Natl Acad. Sci. USA 97, 4215–4220 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Klicznik, M. M. et al. Human CD4+CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals. Sci. Immunol. 4, eaav8995 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. de Almeida, G. P. et al. Human skin-resident host T cells can persist long term after allogeneic stem cell transplantation and maintain recirculation potential. Sci. Immunol. 7, eabe2634 (2022).

    Article  PubMed  Google Scholar 

  123. Qiu, Z., Chu, T. H. & Sheridan, B. S. TGF-β: many paths to CD103+ CD8 T cell residency. Cells 10, 989 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pallett, L. J. et al. Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. J. Exp. Med. 217, e20200050 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Abdelsamed, H. A. et al. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis. J. Exp. Med. 214, 1593–1606 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Moskowitz, D. M. et al. Epigenomics of human CD8 T cell differentiation and aging. Sci. Immunol. 2, eaag0192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chomont, N. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15, 893–900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Milner, J. J. et al. Delineation of a molecularly distinct terminally differentiated memory CD8 T cell population. Proc. Natl Acad. Sci. USA 117, 25667–25678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Viano, M. E. et al. Virtual memory CD8+ T cells: origin and beyond. J. Interferon Cytokine Res. 42, 624–642 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Farber, D. L. Tissues, not blood, are where immune cells function. Nature 593, 506–509 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Poon, M. M. L. et al. Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex. Cell Rep. 37, 110071 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Poon, M. M. L. et al. SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Sci. Immunol. 6, eabl9105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 565 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Benichou, G., Gonzalez, B., Marino, J., Ayasoufi, K. & Valujskikh, A. Role of memory T cells in allograft rejection and tolerance. Front. Immunol. 8, 170 (2017).

  136. Beura, L. K., Rosato, P. C. & Masopust, D. Implications of resident memory T cells for transplantation. Am. J. Transpl. 17, 1167–1175 (2017).

    Article  CAS  Google Scholar 

  137. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Park, S. L. et al. Tissue-resident memory CD8+ T cells promote melanoma-immune equilibrium in skin. Nature 565, 366–371 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Huang, Q. et al. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185, 4049–4066 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Im, S. J., Konieczny, B. T., Hudson, W. H., Masopust, D. & Ahmed, R. PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection. Proc. Natl Acad. Sci. USA 117, 4292–4299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gearty, S. V. et al. An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Nature 602, 156–161 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Blanch-Lombarte, O. et al. Enhancement of antiviral CD8+ T-cell responses and complete remission of metastatic melanoma in an HIV-1-infected subject treated with pembrolizumab. J. Clin. Med. 8, 2089 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Herati, R. S. et al. PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine. Nat. Immunol. 23, 1183–1192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Araki, K. et al. mTOR regulates memory CD8 T cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Davignon, J. L. et al. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review. Arthritis Res. Ther. 20, 229 (2018).

  147. Pollizzi, K. N. & Powell, J. D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36, 13–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Qui, M. et al. Favorable vaccine-induced SARS-CoV-2-specific T cell response profile in patients undergoing immune-modifying therapies. J. Clin. Invest. 132, e159500 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ritter, M. L. & Pirofski, L. Mycophenolate mofetil: effects on cellular immune subsets, infectious complications, and antimicrobial activity. Transpl. Infect. Dis. 11, 290–297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mollica Poeta, V., Massara, M., Capucetti, A. & Bonecchi, R. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front. Immunol. 10, 379 (2019).

  151. Ahmed, R. & Akondy, R. S. Insights into human CD8+ T-cell memory using the yellow fever and smallpox vaccines. Immunol. Cell Biol. 89, 340–345 (2011).

  152. Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017).

  153. Bentzen, A. K. et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34, 1037–1045 (2016).

  154. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat. Med. 28, 472–476 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Goel, R. R. et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 374, abm0829 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Carvalho, T. mRNA vaccine effective against RSV respiratory disease. Nat. Med. 29, 755–756 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Rzymski, P., Szuster-Ciesielska, A., Dzieciatkowski, T., Gwenzi, W. & Fal, A. mRNA vaccines: the future of prevention of viral infections? J. Med. Virol. 95, e28572 (2023).

  159. Kim, W. et al. Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature 604, 141–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lederer, K. et al. Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals. Cell 185, 1008–1024 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mudd, P. A. et al. SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell 185, 603–613 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Turner, J. S. et al. Human germinal centres engage memory and naive B cells after influenza vaccination. Nature 586, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lim, J. M. E. et al. SARS-CoV-2 breakthrough infection in vaccinees induces virus-specific nasal-resident CD8+ and CD4+ T cells of broad specificity. J. Exp. Med. 219, e20220780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Roukens, A. H. E. et al. Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8+ T cell responses following COVID-19. Nat. Immunol. 23, 23–32 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Darton, T. C. et al. Design, recruitment, and microbiological considerations in human challenge studies. Lancet Infect. Dis. 15, 840–851 (2015).

    Article  PubMed  Google Scholar 

  166. Killingley, B. et al. Use of a human influenza challenge model to assess person-to-person transmission: proof-of-concept study. J. Infect. Dis. 205, 35–43 (2012).

    Article  PubMed  Google Scholar 

  167. Killingley, B. et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nat. Med. 28, 1031–1041 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Memoli, M. J. et al. Influenza A reinfection in sequential human challenge: implications for protective immunity and “universal” vaccine development. Clin. Infect. Dis. 70, 748–753 (2020).

  169. Message, S. D. et al. Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proc. Natl Acad. Sci. USA 105, 13562–13567 (2008).

  170. Minassian, A. M. et al. A human challenge model for Mycobacterium tuberculosis using Mycobacterium bovis bacille Calmette-Guérin. J. Infect. Dis. 205, 1035–1042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wilkinson, T. M. et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18, 274–280 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Kok, L., Masopust, D. & Schumacher, T. N. The precursors of CD8+ tissue resident memory T cells: from lymphoid organs to infected tissues. Nat. Rev. Immunol. 22, 283–293 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.B. was supported by the Swedish Research Council (2018-02330, 2020-06121 and 2021-04779), the Knut and Alice Wallenberg Foundation (KAW 2021.0136), the European Research Council (101057129 and 101041484), the Karolinska Institutet (2019-00969), the Swedish Society for Medical Research (CG-22-0009), the Swedish Cancer Society (22 2237 Pj), the Åke Wibergs Stiftelse (M20-0190) and the Jonas Söderquist Stiftelse. D.A.P. was supported by the National Institute for Health Research via grant COV-LT2-0041. L.K.M. was supported by a Senior Medical Research Fellowship from the Sylvia and Charles Viertel Charitable Foundation and by a National Health and Medical Research Council Leadership Investigator Grant. M.R.B. was supported by the National Institutes of Health via grants NIAID U19-A1-149680, R21-AI172629, P01-AI31338, P30-AI045008 (Penn Center for AIDS Research), UM-1AI164570 (BEAT-HIV Collaboratory) and NIDDK UC4-DK-112217, and by the Juvenile Diabetes Research Foundation via grant SRA-2022-1237-S-B.

Author information

Authors and Affiliations

Authors

Contributions

M.B., D.A.P., L.K.M. and M.R.B. participated in the writing process and contributed intellectually.

Corresponding author

Correspondence to Marcus Buggert.

Ethics declarations

Competing interests

M.B. is a consultant for Oxford Immunotec, Mabtech, Pfizer, BMS and MSD. M.R.B. is a consultant for Interius Biotherapeutics. D.A.P. and L.K.M. declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary handling editor: Jamie D. K. Wilson, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buggert, M., Price, D.A., Mackay, L.K. et al. Human circulating and tissue-resident memory CD8+ T cells. Nat Immunol 24, 1076–1086 (2023). https://doi.org/10.1038/s41590-023-01538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01538-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing