Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TCF-1: a maverick in T cell development and function

Abstract

The T cell-specific DNA-binding protein TCF-1 is a central regulator of T cell development and function along multiple stages and lineages. Because it interacts with β-catenin, TCF-1 has been classically viewed as a downstream effector of canonical Wnt signaling, although there is strong evidence for β-catenin-independent TCF-1 functions. TCF-1 co-binds accessible regulatory regions containing or lacking its conserved motif and cooperates with other nuclear factors to establish context-dependent epigenetic and transcription programs that are essential for T cell development and for regulating immune responses to infection, autoimmunity and cancer. Although it has mostly been associated with positive regulation of chromatin accessibility and gene expression, TCF-1 has the potential to reduce chromatin accessibility and thereby suppress gene expression. In addition, the binding of TCF-1 bends the DNA and affects the chromatin conformation genome wide. This Review discusses the current understanding of the multiple roles of TCF-1 in T cell development and function and their mechanistic underpinnings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: T cell development and the stages of TCF-1 implication.
Fig. 2: Understanding the fundamental molecular functions of TCF-1.

Similar content being viewed by others

References

  1. Hosokawa, H. & Rothenberg, E. V. How transcription factors drive choice of the T cell fate. Nat. Rev. Immunol. 21, 162–176 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Yang, Q. et al. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38, 694–704 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ishizuka, I. E., Constantinides, M. G., Gudjonson, H. & Bendelac, A. The innate lymphoid cell precursor. Annu. Rev. Immunol. 34, 299–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Kasal, D. N. & Bendelac, A. Multi-transcription factor reporter mice delineate early precursors to the ILC and LTi lineages. J. Exp. Med. 218, e20200487 (2021).

  5. Zhao, X., Shan, Q. & Xue, H. H. TCF1 in T cell immunity: a broadened frontier. Nat. Rev. Immunol. 22, 147–157 (2021).

  6. Mosimann, C., Hausmann, G. & Basler, K. β-Catenin hits chromatin: regulation of Wnt target gene activation. Nat. Rev. Mol. Cell Biol. 10, 276–286 (2009).

  7. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

  8. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

  9. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

  10. Cadigan, K. M. & Waterman, M. L. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb. Perspect. Biol. 4, a007906 (2012).

  11. Ioannidis, V., Beermann, F., Clevers, H. & Held, W. The β-catenin–TCF-1 pathway ensures CD4+CD8+ thymocyte survival. Nat. Immunol. 2, 691–697 (2001).

  12. Xu, Z. et al. Cutting edge: β-catenin-interacting Tcf1 isoforms are essential for thymocyte survival but dispensable for thymic maturation transitions. J. Immunol. 198, 3404–3409 (2017).

  13. Gullicksrud, J. A. et al. Differential requirements for Tcf1 long isoforms in CD8+ and CD4+ T cell responses to acute viral infection. J. Immunol. 199, 911–919 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Koch, U. et al. Simultaneous loss of β- and γ-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111, 160–164 (2008).

  15. Jeannet, G. et al. Long-term, multilineage hematopoiesis occurs in the combined absence of β-catenin and γ-catenin. Blood 111, 142–149 (2008).

  16. Zhao, X. et al. β-catenin and γ-catenin are dispensable for T lymphocytes and AML leukemic stem cells. eLife 9, e55360 (2020).

  17. Liu, J. et al. Lrp5 and Lrp6 are required for maintaining self-renewal and differentiation of hematopoietic stem cells. FASEB J. 33, 5615–5625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prlic, M. & Bevan, M. J. Cutting edge: β-catenin is dispensable for T cell effector differentiation, memory formation, and recall responses. J. Immunol. 187, 1542–1546 (2011).

  19. Gekas, C. et al. β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia 30, 2002–2010 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Guo, Z. et al. β-Catenin stabilization stalls the transition from double-positive to single-positive stage and predisposes thymocytes to malignant transformation. Blood 109, 5463–5472 (2007).

  21. Keerthivasan, S. et al. β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells. Sci. Transl. Med. 6, 225ra228 (2014).

  22. Blatner, N. R. et al. Expression of RORγt marks a pathogenic regulatory T cell subset in human colon cancer. Sci. Transl. Med. 4, 164ra159 (2012). These studies demonstrate that pathogenic activation of β-catenin in inflammatory conditions renders Treg cells proinflammatory.

  23. Quandt, J. et al. Wnt–β-catenin activation epigenetically reprograms Treg cells in inflammatory bowel disease and dysplastic progression. Nat. Immunol. 22, 471–484 (2021). These studies demonstrate that pathogenic activation of β-catenin in inflammatory conditions renders Treg cells proinflammatory.

  24. Sumida, T. et al. Activated β-catenin in Foxp3+ regulatory T cells links inflammatory environments to autoimmunity. Nat. Immunol. 19, 1391–1402 (2018).

  25. Gounari, F. et al. Somatic activation of β-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat. Immunol. 2, 863–869 (2001).

  26. Lento, W., Congdon, K., Voermans, C., Kritzik, M. & Reya, T. Wnt signaling in normal and malignant hematopoiesis. Cold Spring Harb. Perspect. Biol. 5, a008011 (2013).

  27. Groen, R. W. et al. Illegitimate WNT pathway activation by β-catenin mutation or autocrine stimulation in T-cell malignancies. Cancer Res. 68, 6969–6977 (2008).

  28. Bellei, B., Cota, C., Amantea, A., Muscardin, L. & Picardo, M. Association of p53 Arg72Pro polymorphism and β-catenin accumulation in mycosis fungoides. Br. J. Dermatol. 155, 1223–1229 (2006).

  29. Ram-Wolff, C., Martin-Garcia, N., Bensussan, A., Bagot, M. & Ortonne, N. Histopathologic diagnosis of lymphomatous versus inflammatory erythroderma: a morphologic and phenotypic study on 47 skin biopsies. Am. J. Dermatopathol. 32, 755–763 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ng, O. H. et al. Deregulated WNT signaling in childhood T-cell acute lymphoblastic leukemia. Blood Cancer J. 4, e192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dose, M. et al. β-Catenin induces T-cell transformation by promoting genomic instability. Proc. Natl Acad. Sci. USA 111, 391–396 (2014).

  32. Gounaris, E. et al. T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res. 69, 5490–5497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rothenberg, E. V., Moore, J. E. & Yui, M. A. Launching the T-cell-lineage developmental programme. Nat. Rev. Immunol. 8, 9–21 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shah, D. K. & Zuniga-Pflucker, J. C. An overview of the intrathymic intricacies of T cell development. J. Immunol. 192, 4017–4023 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Germar, K. et al. T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. Proc. Natl Acad. Sci. USA 108, 20060–20065 (2011). These studies establish that NOTCH1-induced TCF-1 expression in ETPs is essential for T cell specification.

  36. Weber, B. N. et al. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476, 63–68 (2011). These studies establish that NOTCH1-induced TCF-1 expression in ETPs is essential for T cell specification.

  37. Harly, C. et al. A shared regulatory element controls the initiation of Tcf7 expression during early T cell and innate lymphoid cell developments. Front Immunol. 11, 470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kueh, H. Y. et al. Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment. Nat. Immunol. 17, 956–965 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, W., Gao, F., Romero-Wolf, M., Jo, S. & Rothenberg, E. V. Single-cell perturbation dissects transcription factor control of progression speed and trajectory choice in early T-cell development. Preprint at bioRxiv https://doi.org/10.1101/2021.09.03.458944 (2021). These studies establish that NOTCH1-induced TCF-1 expression in ETPs is essential for T cell specification.

  40. Okamura, R. M. et al. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8, 11–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, S. et al. The TCF-1 and LEF-1 transcription factors have cooperative and opposing roles in T cell development and malignancy. Immunity 37, 813–826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Melichar, H. J. et al. Regulation of γδ versus αβ T lymphocyte differentiation by the transcription factor SOX13. Science 315, 230–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Fahl, S. P. et al. The E protein-TCF1 axis controls γδ T cell development and effector fate. Cell Rep. 34, 108716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Emmanuel, A. O. et al. TCF-1 and HEB cooperate to establish the epigenetic and transcription profiles of CD4+CD8+ thymocytes. Nat. Immunol. 19, 1366–1378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, L. et al. Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells. Nat. Immunol. 9, 1122–1130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Egawa, T. & Littman, D. R. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nat. Immunol. 9, 1131–1139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muroi, S. et al. Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. Nat. Immunol. 9, 1113–1121 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Steinke, F. C. et al. TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4+ T cell fate and interact with Runx3 to silence Cd4 in CD8+ T cells. Nat. Immunol. 15, 646–656 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saravia, J., Chapman, N. M. & Chi, H. Helper T cell differentiation. Cell Mol. Immunol. 16, 634–643 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mielke, L. A. et al. TCF-1 limits the formation of TC17 cells via repression of the MAF-RORγt axis. J. Exp. Med. 216, 1682–1699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Escobar, G., Mangani, D. & Anderson, A. C. T cell factor 1: a master regulator of the T cell response in disease. Sci. Immunol. 5, eabb9726 (2020).

  52. Bettelli, E., Korn, T., Oukka, M. & Kuchroo, V. K. Induction and effector functions of TH17 cells. Nature 453, 1051–1057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ma, J., Wang, R., Fang, X., Ding, Y. & Sun, Z. Critical role of TCF-1 in repression of the IL-17 gene. PLoS ONE 6, e24768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature 565, 101–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Walker, J. A. & McKenzie, A. N. J. TH2 cell development and function. Nat. Rev. Immunol. 18, 121–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Dennis, K. L. et al. T-cell expression of IL10 is essential for tumor immune surveillance in the small intestine. Cancer Immunol. Res. 3, 806–814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saadalla, A. et al. Cell intrinsic deregulated β-catenin signaling promotes expansion of bone marrow derived connective tissue type mast cells, systemic inflammation, and colon cancer. Front. Immunol. 10, 2777 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saadalla, A. M. et al. Mast cells promote small bowel cancer in a tumor stage-specific and cytokine-dependent manner. Proc. Natl Acad. Sci. USA 115, 1588–1592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu, Q. et al. T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-γ. Nat. Immunol. 10, 992–999 (2009).

  60. Nakayamada, S. et al. Early TH1 cell differentiation is marked by a TFH cell-like transition. Immunity 35, 919–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 41, 529–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Oestreich, K. J., Mohn, S. E. & Weinmann, A. S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat. Immunol. 13, 405–411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi, Y. S. et al. LEF-1 and TCF-1 orchestrate TFH differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat. Immunol. 16, 980–990 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, T. et al. TCF1 is required for the T follicular helper cell response to viral infection. Cell Rep. 12, 2099–2110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu, L. et al. The transcription factor TCF-1 initiates the differentiation of TFH cells during acute viral infection. Nat. Immunol. 16, 991–999 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Barra, M. M. et al. Transcription factor 7 limits regulatory T cell generation in the thymus. J. Immunol. 195, 3058–3070 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. van Loosdregt, J. et al. Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity 39, 298–310 (2013).

  70. Xing, S. et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J. Exp. Med. 216, 847–866 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van der Veeken, J. et al. The transcription factor Foxp3 shapes regulatory T cell identity by tuning the activity of trans-acting intermediaries. Immunity 53, 971–984 e975 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Osman, A. et al. TCF-1 controls Treg cell functions that regulate inflammation, CD8+ T cell cytotoxicity and severity of colon cancer. Nat. Immunol. 22, 1152–1162 (2021). This study shows that TCF-1 differentially regulates Treg cell functions and cooperates with FOXP3 to suppress TH17 and T cell activation programs.

  73. Sage, P. T. & Sharpe, A. H. T follicular regulatory cells. Immunol. Rev. 271, 246–259 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Pais Ferreira, D. et al. Central memory CD8+ T cells derive from stem-like Tcf7hi effector cells in the absence of cytotoxic differentiation. Immunity 53, 985–1000 e1011 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Jeannet, G. et al. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc. Natl Acad. Sci. USA 107, 9777–9782 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin, W.-HsuanW. et al. CD8+ T lymphocyte self-renewal during effector cell determination. Cell Rep. 17, 1773–1782 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev. Immunol. 31, 137–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Zhou, X. & Xue, H. H. Cutting edge: generation of memory precursors and functional memory CD8+ T cells depends on T cell factor-1 and lymphoid enhancer-binding factor-1. J. Immunol. 189, 2722–2726 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Man, K. et al. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity 47, 1129–1141.e1125 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016). This study clearly defines characteristics of TEX-STEM cells and establishes their dependence on TCF-1 in the context of chronic viral infection.

  91. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, T. et al. The TCF1–Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016).

  93. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017). This report associates tumour-specific T cell dysfunction to progressive loss of accessibility in chromatin sites enriched for the TCF motif.

  94. Abdel-Hakeem, M. S. et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nat. Immunol. 22, 1008–1019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liang, C., Huang, S., Zhao, Y., Chen, S. & Li, Y. TOX as a potential target for immunotherapy in lymphocytic malignancies. Biomark. Res 9, 20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Arce, L., Pate, K. T. & Waterman, M. L. Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer 9, 159 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Xing, S. et al. Tcf1 and Lef1 transcription factors establish CD8+ T cell identity through intrinsic HDAC activity. Nat. Immunol. 17, 695–703 (2016). This work identifies and maps self-intrinsic HDAC activity in TCF-1 and LEF1, and determines its contribution to the establishment of the CD8+ T cell identity.

  99. Johnson, J. L. et al. Lineage-determining transcription factor TCF-1 initiates the epigenetic identity of T cells. Immunity 48, 243–257 e210 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shan, Q. et al. Tcf1 and Lef1 provide constant supervision to mature CD8+ T cell identity and function by organizing genomic architecture. Nat. Commun. 12, 5863 (2021). This study identifies roles of TCF-1 and LEF-1 in shaping the chromatin conformation of CD8+ T cells.

  101. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhong, Y. et al. Hierarchical regulation of the resting and activated T cell epigenome by major transcription factor families. Nat. Immunol. 23, 122–134 (2022). This paper leverages the genetic variability between B6 and CAST mice and integration of expression, transcription factor binding and epigenetic data to derive the central functions of transcription factor families in T cell activation.

  103. Li, F. et al. TFH cells depend on Tcf1-intrinsic HDAC activity to suppress CTLA4 and guard B-cell help function. Proc. Natl Acad. Sci. USA 118, e2014562118 (2021). This study establishes that LEF-1 bends DNA and that this facilitates the assembly of functional nucleoprotein complexes.

  104. Grosschedl, R., Giese, K. & Pagel, J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10, 94–100 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Giese, K., Cox, J. & Grosschedl, R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69, 185–195 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Love, J. J. et al. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376, 791–795 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Hu, G. et al. Transformation of accessible chromatin and 3D nucleome underlies lineage commitment of early T cells. Immunity 48, 227–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J. Exp. Med. 215, 2520–2535 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1CD8+ tumor-infiltrating T cells. Immunity 50, 181–194 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 e110 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

  113. Zhang, J. et al. TCF-1 inhibits IL-17 gene expression to restrain TH17 immunity in a stage-specific manner. J. Immunol. 200, 3397–3406 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants R01 AI 108682 (to F.G. and K.K.) and R01 AI 147652 (to F.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fotini Gounari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Christelle Harly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling editor: Laurie A. Dempsey, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gounari, F., Khazaie, K. TCF-1: a maverick in T cell development and function. Nat Immunol 23, 671–678 (2022). https://doi.org/10.1038/s41590-022-01194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-022-01194-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing