Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation

Abstract

Recent advances have highlighted the ability of hematopoietic stem and progenitor cells in the bone marrow to sense peripheral inflammation or infection and adapt through increased proliferation and skewing toward the myeloid lineage. Such adaptations can meet the increased demand for innate immune cells and can be beneficial in response to infection or myeloablation. However, the inflammation-induced adaptation of hematopoietic and myeloid progenitor cells toward enhanced myelopoiesis might also perpetuate inflammation in chronic inflammatory or cardio-metabolic diseases by generating a feed-forward loop between inflammation-adapted hematopoietic progenitor cells and the inflammatory disorder. Sustained adaptive responses of progenitor cells in the bone marrow can also contribute to trained immunity, a non-specific memory of earlier encounters that in turn facilitates the heightened response of these cells, as well as that of their progeny, to future challenges. Here we discuss the mechanisms that govern the adaptation of hematopoietic progenitor cells to inflammation and its sequelae in the pathogenesis of human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inflammatory adaptation of hematopoietic progenitor cells.
Fig. 2: Regulation of HSCs by their progeny in the BM niche.
Fig. 3: Adaptation of hematopoietic progenitor cells in cardio-metabolic disease.
Fig. 4: A detrimental feed-forward loop that links the adaptation of HSPCs to inflammation with chronic inflammatory disease.

Similar content being viewed by others

References

  1. King, K. Y. & Goodell, M. A. Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat. Rev. Immunol. 11, 685–692 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Manz, M. G. & Boettcher, S. Emergency granulopoiesis. Nat. Rev. Immunol. 14, 302–314 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Jacobsen, S. E. W. & Nerlov, C. Haematopoiesis in the era of advanced single-cell technologies. Nat. Cell Biol. 21, 2–8 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13, 102–116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wei, Q. & Frenette, P. S. Niches for hematopoietic stem cells and their progeny. Immunity 48, 632–648 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cordeiro Gomes, A. et al. Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity 45, 1219–1231 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Suda, T., Takubo, K. & Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9, 298–310 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Carrelha, J. et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554, 106–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu, V. W. C. et al. Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 167, 1310–1322.e1317 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Gekas, C. & Graf, T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121, 4463–4472 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Pietras, E. M. et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 17, 35–46 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giladi, A. et al. Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 20, 836–846 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Avellino, R. et al. An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation. Blood 127, 2991–3003 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Itoh-Nakadai, A. et al. A Bach2-Cebp gene regulatory network for the commitment of multipotent hematopoietic progenitors. Cell Reports 18, 2401–2414 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Pietras, E. M. et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18, 607–618 (2016).This study showed that IL-1β serves as a major regulator of hematopoiesis by acting directly on HSCs and promoting their proliferation and myeloid differentiation. Although this mechanism is crucial for rapid myeloid recovery after acute BM injury, chronic IL-1β diminishes the self-renewal capacity of HSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Schultze, J. L., Mass, E. & Schlitzer, A. Emerging principles in myelopoiesis at homeostasis and during infection and inflammation. Immunity 50, 288–301 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Álvarez-Errico, D., Vento-Tormo, R., Sieweke, M. & Ballestar, E. Epigenetic control of myeloid cell differentiation, identity and function. Nat. Rev. Immunol. 15, 7–17 (2015).

    Article  PubMed  CAS  Google Scholar 

  23. Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364––379.e368 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Sawai, C. M. et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45, 597–609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nahrendorf, M. Myeloid cell contributions to cardiovascular health and disease. Nat. Med. 24, 711–720 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mitroulis, I., Kalafati, L., Hajishengallis, G. & Chavakis, T. Myelopoiesis in the context of innate immunity. J. Innate Immun. 10, 365–372 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagai, Y. et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24, 801–812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, J. L. et al. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 14, 445–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takizawa, H., Regoes, R. R., Boddupalli, C. S., Bonhoeffer, S. & Manz, M. G. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J. Exp. Med. 208, 273–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, A. et al. Cutting edge: hematopoietic stem cell expansion and common lymphoid progenitor depletion require hematopoietic-derived, cell-autonomous TLR4 in a model of chronic endotoxin. J. Immunol. 195, 2524–2528 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Esplin, B. L. et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J. Immunol. 186, 5367–5375 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, C., Liu, Y., Liu, Y. & Zheng, P. Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice. J. Clin. Invest. 120, 4091–4101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, H. et al. Sepsis induces hematopoietic stem cell exhaustion and myelosuppression through distinct contributions of TRIF and MYD88. Stem Cell Reports 6, 940–956 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takizawa, H. et al. Pathogen-induced TLR4-TRIF innate immune signaling in hematopoietic stem cells promotes proliferation but reduces competitive fitness. Cell Stem Cell 21, 225–240.e225 (2017).This study demonstrated that direct activation of TLR4 on HSCs stimulates (via TRIF-dependent signaling) their proliferation while diminishing their self-renewal and repopulation capacity.

    Article  CAS  PubMed  Google Scholar 

  37. Yáñez, A. et al. Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 47, 890–902.e4 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Boettcher, S. et al. Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124, 1393–1403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirai, H. et al. C/EBPβ is required for ‘emergency’ granulopoiesis. Nat. Immunol. 7, 732–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Hibbs, M. L. et al. Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis. J. Immunol. 178, 6435–6443 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Becher, B., Tugues, S. & Greter, M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity 45, 963–973 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, H. et al. STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood 116, 2462–2471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hérault, A. et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature 544, 53–58 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Greenbaum, A. M. & Link, D. C. Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 25, 211–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Christopher, M. J., Rao, M., Liu, F., Woloszynek, J. R. & Link, D. C. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J. Exp. Med. 208, 251–260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Croker, B. A. et al. SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 20, 153–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Article  PubMed  Google Scholar 

  49. Shen, Q. et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature 554, 123–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Rieger, M. A., Hoppe, P. S., Smejkal, B. M., Eitelhuber, A. C. & Schroeder, T. Hematopoietic cytokines can instruct lineage choice. Science 325, 217–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Endele, M. et al. CSF-1-induced Src signaling can instruct monocytic lineage choice. Blood 129, 1691–1701 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mossadegh-Keller, N. et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497, 239–243 (2013).This pivotal study showed that M-CSF promotes myeloid differentiation of single HSCs, independently of their survival or proliferation, by inducing the myeloid-lineage master regulator PU.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kandalla, P. K. et al. M-CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation. J. Exp. Med. 213, 2269–2279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Essers, M. A. et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908 (2009).This seminal report showed that IFN-α drives the proliferation of dormant HSCs, although in a chronic setting, this mechanism impairs the self-renewal potential of HSCs.

    Article  CAS  PubMed  Google Scholar 

  56. Sato, T. et al. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat. Med. 15, 696–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Walter, D. et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520, 549–552 (2015). This study identified the mechanism whereby IFN-α causes impairment and attrition of HSCs. Specifically, the authors demonstrated IFN-α -induced DNA damage in LT-HSCs after their entry into the cell cycle, associated with increased mitochondrial membrane potential and ROS production.

    Article  PubMed  CAS  Google Scholar 

  58. Pietras, E. M. et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J. Exp. Med. 211, 245–262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cabezas-Wallscheid, N. et al. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169, 807–823.e819 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Roers, A., Hiller, B. & Hornung, V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Xia, P. et al. A Circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity 48, 688–701.e687 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Prendergast, A. M. et al. IFNα-mediated remodeling of endothelial cells in the bone marrow niche. Haematologica 102, 445–453 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haas, S. et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17, 422–434 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Baldridge, M. T., King, K. Y., Boles, N. C., Weksberg, D. C. & Goodell, M. A. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465, 793–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. de Bruin, A. M., Demirel, Ö., Hooibrink, B., Brandts, C. H. & Nolte, M. A. Interferon-γ impairs proliferation of hematopoietic stem cells in mice. Blood 121, 3578–3585 (2013).

    Article  PubMed  CAS  Google Scholar 

  66. Matatall, K. A. et al. Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation. Cell Rep. 17, 2584–2595 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schürch, C. M., Riether, C. & Ochsenbein, A. F. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell 14, 460–472 (2014).

    Article  PubMed  CAS  Google Scholar 

  68. Kaufmann, E. et al. BCG Educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190.e119 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weisser, M. et al. Hyperinflammation in patients with chronic granulomatous disease leads to impairment of hematopoietic stem cell functions. J. Allergy Clin. Immunol. 138, 219–228.e219 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Damia, G. et al. Prevention of acute chemotherapy-induced death in mice by recombinant human interleukin 1: protection from hematological and nonhematological toxicities. Cancer Res. 52, 4082–4089 (1992).

    CAS  PubMed  Google Scholar 

  72. van der Meer, J. W., Barza, M., Wolff, S. M. & Dinarello, C. A. A low dose of recombinant interleukin 1 protects granulocytopenic mice from lethal Gram-negative infection. Proc. Natl Acad. Sci. USA 85, 1620–1623 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pronk, C. J., Veiby, O. P., Bryder, D. & Jacobsen, S. E. Tumor necrosis factor restricts hematopoietic stem cell activity in mice: involvement of two distinct receptors. J. Exp. Med. 208, 1563–1570 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Etzrodt, M. et al. Inflammatory signals directly instruct PU.1 in HSCs via TNF. Blood 133, 816–819 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Weber, G. F. et al. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science 347, 1260–1265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cai, Z. et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell 23, 833–849.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Furusawa, J. et al. Promotion of expansion and differentiation of hematopoietic stem cells by interleukin-27 into myeloid progenitors to control infection in emergency myelopoiesis. PLoS Pathog. 12, e1005507 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mitroulis, I. et al. Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche. J. Clin. Invest. 127, 3624–3639 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kanayama, M. et al. Skewing of the population balance of lymphoid and myeloid cells by secreted and intracellular osteopontin. Nat. Immunol. 18, 973–984 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lucas, D. et al. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat. Med. 19, 695–703 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Méndez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008).

    Article  PubMed  CAS  Google Scholar 

  85. Winkler, I. G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815–4828 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ludin, A. et al. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol. 13, 1072–1082 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kwak, H. J. et al. Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis. Immunity 42, 159–171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bowers, E. et al. Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow. Nat. Med. 24, 95–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Zhao, M. et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20, 1321–1326 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Bruns, I. et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20, 1315–1320 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pinho, S. et al. Lineage-biased hematopoietic stem cells are regulated by distinct niches. Dev Cell 44, 634–641 e634 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hirata, Y. et al. CD150high bone marrow Tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell 22, 445–453 e445 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Netea, M. G. et al. Trained immunity: A program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Penkov, S., Mitroulis, I., Hajishengallis, G. & Chavakis, T. Immunometabolic crosstalk: an ancestral principle of trained immunity? Trends Immunol. 40, 1–11 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e112 (2018).This paper resolved the paradox of the long-term effects of trained immunity in mature myeloid cells despite their relatively short lifespan in the circulation. It demonstrated that the metabolic and transcriptional adaptations in HSPCs that lead to enhanced myelopoiesis are an integral component of trained immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010). This study showed that cholesterol accumulation in HSPCs due to deficiency in cholesterol-efflux mechanisms results in HSPC expansion and myeloid differentiation associated with elevated IL-3Rβ expression. These alterations can lead to leukocytosis and accelerate atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Flach, J. et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512, 198–202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Takubo, K. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49–61 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Murphy, A. J. & Tall, A. R. Disordered haematopoiesis and athero-thrombosis. Eur. Heart J. 37, 1113–1121 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Barrett, T. J., Murphy, A. J., Goldberg, I. J. & Fisher, E. A. Diabetes-mediated myelopoiesis and the relationship to cardiovascular risk. Ann. NY Acad. Sci. 1402, 31–42 (2017).

    Article  PubMed  Google Scholar 

  105. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nagareddy, P. R. et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 19, 821–835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Griffin, C. et al. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c+ adipose tissue macrophage production in obese mice. J. Biol. Chem. 293, 8775–8786 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Singer, K. et al. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol. Metab. 3, 664–675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Khosravi, A. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15, 374–381 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Luo, Y. et al. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 22, 886–894 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Dutta, P. et al. Myocardial infarction activates CCR2+ hematopoietic stem and progenitor cells.Cell Stem Cell 16, 477–487 (2015). This study identified CCR2 + CD150 + CD48 - LSK cells as a myeloid-biased HSPC subset that exhibits greater proliferative capacity and reduced self-renewal capacity than that of HSCs and contributes to post-MI enhanced myelopoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019). This report identified a neurological–immunological mechanism that links sleep to the regulation of hematopoiesis. Specifically, the authors showed that fragmented sleep in mice reduces the production of hypocretin from hypothalamus, which in turn leads to enhanced M-CSF-dependent monocytosis and accelerated atherosclerosis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Sager, H. B. et al. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction. Circulation 132, 1880–1890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e14 (2018). This study causally linked a Western diet to atherosclerosis through the induction of trained innate immunity in myeloid progenitors that leads to their enhanced proliferation and inflammatory responses. The mechanism mediated by the Western diet involves NLRP3 inflammasome– and IL-1-dependent transcriptomic and epigenetic reprogramming of the progenitor cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Anzai, A. et al. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J. Exp. Med. 214, 3293–3310 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bekkering, S. et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell 172, 135–146 e139 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Arts, R. J. et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 24, 807–819 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kourtzelis, I. et al. DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat. Immunol. 20, 40–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Sallam, T. et al. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding. RNA. Nat. Med. 24, 304–312 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Murphy, A. J. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 121, 4138–4149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dragoljevic, D. et al. Defective cholesterol metabolism in haematopoietic stem cells promotes monocyte-driven atherosclerosis in rheumatoid arthritis. Eur. Heart J. 39, 2158–2167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hajishengallis, G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gutierrez-Martinez, P. et al. Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage. Nat. Cell Biol. 20, 413–421 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ho, T. T. et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543, 205–210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208, 2691–2703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yamamoto, R. et al. Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment. Cell Stem Cell 22, 600–607.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mann, M. et al. Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age. Cell Rep. 25, 2992–3005.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017). This study linked aging-related clonal hematopoiesis with an increased risk for coronary heart disease and showed that TET2 deficiency promotes atherosclerosis.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017). Consistent with the findings of ref. 133, this report showed that deficiency in TET2 is associated with HSPC expansion and a myeloid bias that enhances atherosclerosis in mice deficient in the low-density lipoprotein receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 Inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Basiorka, A. A. et al. The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood 128, 2960–2975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Meisel, M. et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557, 580–584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the US National Institutes of Health (DE015254, DE024153 and DE024716 to G.H. and DE026152 to G.H. and T.C.), the European Research Council (DEMETINL-683145 to T.C.), the Deutsche Forschungsgemeinschaft (SFB/TRR 205 to T.C.) and the National Center for Tumor Diseases, Partner Site Dresden (I.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Triantafyllos Chavakis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavakis, T., Mitroulis, I. & Hajishengallis, G. Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat Immunol 20, 802–811 (2019). https://doi.org/10.1038/s41590-019-0402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-019-0402-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing