Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Host–microbiome orchestration of the sulfated metabolome

Abstract

Recent studies have demonstrated that metabolites produced by commensal bacteria causally influence health and disease. The sulfated metabolome is one class of molecules that has recently come to the forefront due to efforts to understand the role of these metabolites in host–microbiome interactions. Sulfated compounds have canonically been classified as waste products; however, studies have revealed a variety of physiological roles for these metabolites, including effects on host metabolism, immune response and neurological function. Moreover, recent research has revealed that commensal bacteria either chemically modify or synthesize a variety of sulfated compounds. In this Review, we explore how host–microbiome collaborative metabolism transforms the sulfated metabolome. We describe bacterial and mammalian enzymes that sulfonate and desulfate biologically relevant carbohydrates, amino acid derivatives and cholesterol-derived metabolites. We then discuss outstanding questions and future directions in the field, including potential roles of sulfated metabolites in disease detection, prevention and treatment. We hope that this Review inspires future research into sulfated compounds and their effects on physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The host and the microbiome produce sulfated metabolites through collaborative metabolism.
Fig. 2: Microbial desulfation of sulfated carbohydrates influences host biology.
Fig. 3: Amino acid-derived sulfated metabolites exhibit diverse biological effects.
Fig. 4: Host and microbial enzymes biosynthesize cholesterol-derived sulfated metabolites.
Fig. 5: Cholesterol-derived sulfated metabolites are associated with host phenotypes.

Similar content being viewed by others

References

  1. Jancova, P., Anzenbacher, P. & Anzenbacherova, E. Phase II drug metabolizing enzymes. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 154, 103–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Lindsay, J., Wang, L.-L., Li, Y. & Zhou, S.-F. Structure, function and polymorphism of human cytosolic sulfotransferases. Curr. Drug Metab. 9, 99–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Fleming, I. The factor in EDHF: cytochrome P450 derived lipid mediators and vascular signaling. Vascul. Pharmacol. 86, 31–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Li, T. & Apte, U. Bile acid metabolism and signaling in cholestasis, inflammation, and cancer. Adv. Pharmacol. 74, 263–302 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sakurai, T. et al. Cholesterol sulfate is a DOCK2 inhibitor that mediates tissue-specific immune evasion in the eye. Sci. Signal. 11, eaao4874 (2018).

    Article  PubMed  Google Scholar 

  6. Wang, F., Beck-García, K., Zorzin, C., Schamel, W. W. A. & Davis, M. M. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat. Immunol. 17, 844–850 (2016). Cholesterol sulfate, historically considered a waste product, inhibits T cell receptor signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lobel, L., Cao, Y. G., Fenn, K., Glickman, J. N. & Garrett, W. S. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function. Science 369, 1518–1524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campbell, A. S. et al. Safety and target engagement of an oral small-molecule sequestrant in adolescents with autism spectrum disorder: an open-label phase 1b/2a trial. Nat. Med. 28, 528–534 (2022). Oral administration of the sequestrant AB-2004 reduced levels of sulfated aromatic amino acid metabolites and improved some ASD phenotypes in human patients. This is the first clinical trial resulting from the study of sulfonated microbial metabolites.

    Article  Google Scholar 

  9. Correia, M. S. P. et al. Comparative dietary sulfated metabolome analysis reveals unknown metabolic interactions of the gut microbiome and the human host. Free Radic. Biol. Med. 160, 745–754 (2020).

    Article  CAS  Google Scholar 

  10. Fitzgerald, C. C. J. et al. Profiling urinary sulfate metabolites with mass spectrometry. Front. Mol. Biosci. 9, 829511 (2022). This paper provides a new analytical method for systematic, untargeted metabolic profiling of sulfated metabolites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Needham, B. D. et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 602, 647–653 (2022). Collaborative metabolism between the host and the microbiome results in production of a sulfated amino acid, 4EPS, which modulates neurological activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mougous, J. D., Green, R. E., Williams, S. J., Brenner, S. E. & Bertozzi, C. R. Sulfotransferases and sulfatases in mycobacteria. Chem. Biol. 9, 767–776 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Yao, L. et al. A biosynthetic pathway for the selective sulfonation of steroidal metabolites by human gut bacteria. Nat. Microbiol 7, 1404–1418 (2022). One of the first two papers to report cholesterol sulfonation by gut bacteria, this work also shows that cholesterol sulfate inhibits leukocyte migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Le, H. H., Lee, M.-T., Besler, K. R., Comrie, J. M. C. & Johnson, E. L. Characterization of interactions of dietary cholesterol with the murine and human gut microbiome. Nat. Microbiol. 7, 1390–1403 (2022). One of the first two papers to report cholesterol sulfonation by gut bacteria, this work also shows that cholesterol sulfate produced by gut bacteria enters systemic circulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ervin, S. M. et al. Structural insights into endobiotic reactivation by human gut microbiome-encoded sulfatases. Biochemistry 59, 3939–3950 (2020). This work structurally characterized representative SULFs from across the gut microbiome, identified conserved motifs for active site activation and identified key variations in gut microbial SULFs that may give rise to substrate selectivity profiles.

    Article  CAS  PubMed  Google Scholar 

  16. Eldere, J. V., Parmentier, G., Asselberghs, S. & Eyssen, H. Partial characterization of the steroidsulfatases in Peptococcus niger H4. Appl. Environ. Microbiol. 57, 69–76 (1991).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay‐Kumar, M. Dextran sulfate sodium (DSS)‐induced colitis in mice. Curr. Protoc. Immunol. 104, 15.25.1–15.25.14 (2014).

    Article  PubMed  Google Scholar 

  18. Araki, Y. et al. Dextran sulfate sodium administered orally is depolymerized in the stomach and induces cell cycle arrest plus apoptosis in the colon in early mouse colitis. Oncol. Rep. 28, 1597–1605 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Hernández-Chirlaque, C. et al. Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. J. Crohns Colitis 10, 1324–1335 (2016).

    Article  PubMed  Google Scholar 

  20. Forster, S. C. et al. Identification of gut microbial species linked with disease variability in a widely used mouse model of colitis. Nat. Microbiol. 7, 590–599 (2022). This paper reports that differences in susceptibility to DSS-induced colitis in mice are caused by gut bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, M., Wu, Y., Hu, Y., Zhao, L. & Zhang, C. Initial gut microbiota structure affects sensitivity to DSS-induced colitis in a mouse model. Sci. China Life Sci. 61, 762–769 (2018).

    Article  Google Scholar 

  22. Brinkman, B. M. et al. Gut microbiota affects sensitivity to acute DSS-induced colitis independently of host genotype. Inflamm. Bowel Dis. 19, 2560–2567 (2013).

    Google Scholar 

  23. Chang, C.-S. et al. Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. Cell Rep. 37, 110016 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Akao, T., Oyanagi, Y., Shiotsuki, S., Ishii, Y. & Sasahara, M. Metabolism of dextran sulfate sodium by intestinal bacteria in rat cecum is related to induction of colitis. Biol. Pharm. Bull. 38, 566–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Eichele, D. D. & Kharbanda, K. K. Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J. Gastroenterol. 23, 6016–6029 (2017).

    CAS  Google Scholar 

  26. Dhar, P. & McAuley, J. The role of the cell surface mucin MUC1 as a barrier to infection and regulator of inflammation. Front. Cell. Infect. Microbiol. 9, 117 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khan, I. et al. Differential susceptibility of the gut microbiota to DSS treatment interferes in the conserved microbiome association in mouse models of colitis and is related to the initial gut microbiota difference. Adv. Gut Microbiome Res. 2022, 7813278 (2022).

  28. Liu, F. et al. Chondroitin sulfate disaccharides modified the structure and function of the murine gut microbiome under healthy and stressed conditions. Sci. Rep. 7, 6783 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Henrotin, Y., Mathy, M., Sanchez, C. & Lambert, C. Chondroitin sulfate in the treatment of osteoarthritis: from in vitro studies to clinical recommendations. Ther. Adv. Musculoskelet. Dis. 2, 335–348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Q., Huang, S.-Q., Li, C.-Q., Xu, Q. & Zeng, Q.-P. Akkermansia muciniphila may determine chondroitin sulfate ameliorating or aggravating osteoarthritis. Front. Microbiol. 8, 1955 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wu, R., Shen, Q., Li, P. & Shang, N. Sturgeon chondroitin sulfate restores the balance of gut microbiota in colorectal cancer bearing mice. Int. J. Mol. Sci. 23, 3723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ewald, C. Y. Drug screening implicates chondroitin sulfate as a potential longevity pill. Front. Aging 2, 741843 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Habuchi, H., Ushida, T. & Habuchi, O. Mice deficient in N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase exhibit enhanced liver fibrosis and delayed recovery from fibrosis in carbon tetrachloride-treated mice. Heliyon 2, e00138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liao, T. et al. Chondroitin sulfate elicits systemic pathogenesis in mice by interfering with gut microbiota homeostasis. Preprint at bioRxiv https://doi.org/10.1101/142588 (2017).

  35. Shang, Q. et al. Degradation of chondroitin sulfate by the gut microbiota of Chinese individuals. Int. J. Biol. Macromol. 86, 112–118 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Kawai, K., Kamochi, R., Oiki, S., Murata, K. & Hashimoto, W. Probiotics in human gut microbiota can degrade host glycosaminoglycans. Sci. Rep. 8, 10674 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ulmer, J. E. et al. Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase. J. Biol. Chem. 289, 24289–24303 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ndeh, D. et al. Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus. Nat. Commun. 11, 646 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim, J. J. & Temenoff, J. S. The effect of desulfation of chondroitin sulfate on interactions with positively charged growth factors and upregulation of cartilaginous markers in encapsulated MSCs. Biomaterials 34, 5007–5018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shmagel, A. et al. The effects of glucosamine and chondroitin sulfate on gut microbial composition: a systematic review of evidence from animal and human studies. Nutrients 11, 294 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pichette, J., Fynn-Sackey, N. & Gagnon, J. Hydrogen sulfide and sulfate prebiotic stimulates the secretion of GLP-1 and improves glycemia in male mice. Endocrinology 158, 3416–3425 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Davis, D. A. S. & Parish, C. R. Heparan sulfate: a ubiquitous glycosaminoglycan with multiple roles in immunity. Front. Immunol. 4, 470 (2013).

    Google Scholar 

  43. Bishop, J. R., Schuksz, M. & Esko, J. D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Nagarajan, A., Malvi, P. & Wajapeyee, N. Heparan sulfate and heparan sulfate proteoglycans in cancer initiation and progression. Front. Endocrinol. 9, 483 (2018).

    Article  Google Scholar 

  45. Wang, S. T., Neo, B. H. & Betts, R. J. Glycosaminoglycans: sweet as sugar targets for topical skin anti-aging. Clin. Cosmet. Investig. Dermatol. 14, 1227–1246 (2021).

    Google Scholar 

  46. Jung, S. H. et al. Heparan sulfation is essential for the prevention of cellular senescence. Cell Death Differ. 23, 417–429 (2016).

    CAS  Google Scholar 

  47. Risi, M. D. et al. Altered heparan sulfate metabolism during development triggers dopamine-dependent autistic-behaviours in models of lysosomal storage disorders. Nat. Commun. 12, 3495 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Clausen, T. M. et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 183, 1043–1057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martino, C. et al. Bacterial modification of the host glycosaminoglycan heparan sulfate modulates SARS-CoV-2 infectivity. Preprint at bioRxiv https://doi.org/10.1101/2020.08.17.238444 (2020).

  50. Morris, A. et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 187, 1067–1075 (2013).

    Article  Google Scholar 

  51. O’Dwyer, D. N., Dickson, R. P. & Moore, B. B. The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J. Immunol. 196, 4839–4847 (2016).

    Article  PubMed  Google Scholar 

  52. Luis, A. S. et al. Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota. Nat. Chem. Biol. 18, 841–849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luis, A. S. et al. A single sulfatase is required to access colonic mucin by a gut bacterium. Nature 598, 332–337 (2021). This paper is the first report of a bacterial gene and enzyme responsible for degrading host gut mucin via desulfation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Devlin, A. S. et al. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe 20, 709–715 (2016).

    CAS  Google Scholar 

  55. Opdebeeck, B. et al. Indoxyl sulfate and p-cresyl sulfate promote vascular calcification and associate with glucose intolerance. J. Am. Soc. Nephrol. 30, 751–766 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hung, S., Kuo, K., Wu, C. & Tarng, D. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J. Am. Heart Assoc. 6, e005022 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schroeder, J. C. et al. The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochemistry 49, 393–400 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Kim, H. Y., Yoo, T.-H., Cho, J.-Y., Kim, H. C. & Lee, W.-W. Indoxyl sulfate-induced TNF‐α is regulated by crosstalk between the aryl hydrocarbon receptor, NF‐κB, and SOCS2 in human macrophages. FASEB J. 33, 10844–10858 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Sun, C.-Y. et al. Indoxyl sulfate caused behavioral abnormality and neurodegeneration in mice with unilateral nephrectomy. Aging 13, 6681–6701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shimada, Y. et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 8, e80604 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li, X., Zhang, B., Hu, Y. & Zhao, Y. New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Front. Pharmacol. 12, 769501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Patel, K. P., Luo, F. J.-G., Plummer, N. S., Hostetter, T. H. & Meyer, T. W. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin. J. Am. Soc. Nephrol. 7, 982–988 (2012).

    CAS  Google Scholar 

  63. Gryp, T., Vanholder, R., Vaneechoutte, M. & Glorieux, G. p-Cresyl sulfate. Toxins 9, 52 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wu, T.-K. et al. The uremic toxin p-cresyl sulfate induces proliferation and migration of clear cell renal cell carcinoma via microRNA-21/ HIF-1α axis signals. Sci. Rep. 9, 3207 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Poesen, R. et al. Cardiovascular disease relates to intestinal uptake of p-cresol in patients with chronic kidney disease. BMC Nephrol. 15, 87 (2014).

    Google Scholar 

  66. Bermudez-Martin, P. et al. The microbial metabolite p-cresol induces autistic-like behaviors in mice by remodeling the gut microbiota. Microbiome 9, 157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harrison, M. A. et al. Clostridioides difficile para-cresol production is induced by the precursor para-hydroxyphenylacetate. J. Bacteriol. 202, e00282-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zheng, Y. et al. The role of bacterial-derived aromatic amino acids metabolites relevant in autism spectrum disorders: a comprehensive review. Front. Neurosci. 15, 738220 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Diémé, B. et al. Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. J. Proteome Res. 14, 5273–5282 (2015).

    Article  PubMed  Google Scholar 

  71. Altieri, L. et al. Urinary p-cresol is elevated in small children with severe autism spectrum disorder. Biomarkers 16, 252–260 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Gabriele, S. et al. Urinary p-cresol is elevated in young French children with autism spectrum disorder: a replication study. Biomarkers 19, 463–470 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Lussu, M. et al. The urinary 1H‐NMR metabolomics profile of an Italian autistic children population and their unaffected siblings. Autism Res. 10, 1058–1066 (2017).

    Article  PubMed  Google Scholar 

  74. Ming, X., Stein, T. P., Barnes, V., Rhodes, N. & Guo, L. Metabolic perturbance in autism spectrum disorders: a metabolomics study. J. Proteome Res. 11, 5856–5862 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Needham, B. D. et al. Plasma and fecal metabolite profiles in autism spectrum disorder. Biol. Psychiatry 89, 451–462 (2021).

    CAS  Google Scholar 

  76. Williams, M. L., Hughes-Fulford, M. & Elias, P. M. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and sterol synthesis by cholesterol sulfate in cultured fibroblasts. Biochim. Biophys. Acta 845, 349–357 (1985).

    CAS  Google Scholar 

  77. Cheetham, J. J., Epand, R. M., Andrews, M. & Flanagan, T. D. Cholesterol sulfate inhibits the fusion of Sendai virus to biological and model membranes. J. Biol. Chem. 265, 12404–12409 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. Strott, C. A. & Higashi, Y. Cholesterol sulfate in human physiology what’s it all about? J. Lipid Res. 44, 1268–1278 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Sanchez, L. D. et al. Cholesterol and oxysterol sulfates: pathophysiological roles and analytical challenges. Br. J. Pharmacol. 178, 3327–3341 (2021).

    CAS  Google Scholar 

  80. Kenny, D. J. et al. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe 28, 245–257 (2020).

    CAS  Google Scholar 

  81. Javitt, N. B., Lee, Y. C., Shimizu, C., Fuda, H. & Strott, C. A. Cholesterol and hydroxycholesterol sulfotransferases: identification, distinction from dehydroepiandrosterone sulfotransferase, and differential tissue expression. Endocrinology 142, 2978–2984 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Dawson, P. A. & Karpen, S. J. Intestinal transport and metabolism of bile acids. J. Lipid Res. 56, 1085–1099 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sato, H. et al. Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure−activity relationships, and molecular modeling studies. J. Med. Chem. 51, 1831–1841 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Xiao, R. et al. Synthesis and identification of lithocholic acid 3‐sulfate as RORγt ligand to inhibit TH17 cell differentiation. J. Leukoc. Biol. 112, 835–843 (2022).

  85. White, A. B., Lipsky, W. R. L., Fricke, R. J. & Hylemon, P. B. Bile acid induction specificity of 7α-dehydroxylase activity in an intestinal Eubacterium species. Steroids 35, 103–109 (1980).

    Article  CAS  PubMed  Google Scholar 

  86. Chaudhari, S. N. et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe 29, 408–424 (2021). This paper shows that sulfated cholic acid (CA7S) improves diabetes phenotypes. Subsequent work revealed that microbial metabolite LCA signals in the liver induce CA7S biosynthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Alnouti, Y. Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol. Sci. 108, 225–246 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Chaudhari, S. N. et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat. Chem. Biol. 17, 20–29 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  PubMed  Google Scholar 

  90. Robert, C. et al. Impact of rapeseed and soy lecithin on postprandial lipid metabolism, bile acid profile, and gut bacteria in mice. Mol. Nutr. Food Res. 65, 2001068 (2021).

    Article  CAS  Google Scholar 

  91. Rutkowski, K., Sowa, P., Rutkowska-Talipska, J., Kuryliszyn-Moskal, A. & Rutkowski, R. Dehydroepiandrosterone (DHEA): hypes and hopes. Drugs 74, 1195–1207 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Prough, R. A., Clark, B. J. & Klinge, C. M. Novel mechanisms for DHEA action. J. Mol. Endocrinol. 56, R139–R155 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Han, Q., Wang, J., Li, W., Chen, Z.-J. & Du, Y. Androgen-induced gut dysbiosis disrupts glucolipid metabolism and endocrinal functions in polycystic ovary syndrome. Microbiome 9, 101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Strott, C. A. Sulfonation and molecular action. Endocr. Rev. 23, 703–732 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Ballet, C. et al. New enzymatic and mass spectrometric methodology for the selective investigation of gut microbiota-derived metabolites. Chem. Sci. 9, 6233–6239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cheng, T.-H. et al. Indoxyl sulfate, a tubular toxin, contributes to the development of chronic kidney disease. Toxins 12, 684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bhimanwar, R. S. & Mittal, A. TGR5 agonists for diabetes treatment: a patent review and clinical advancements (2012–present). Expert Opin. Ther. Pat. 32, 191–209 (2021).

    Article  PubMed  Google Scholar 

  98. Cao, H. et al. Intestinally-targeted TGR5 agonists equipped with quaternary ammonium have an improved hypoglycemic effect and reduced gallbladder filling effect. Sci. Rep. 6, 28676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Adhikari, A. A. et al. A gut-restricted lithocholic acid analog as an inhibitor of gut bacterial bile salt hydrolases. ACS Chem. Biol. 16, 1401–1412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, D. K. et al. Inhibition of microbial deconjugation of micellar bile acids protects against intestinal permeability and liver injury. Sci. Adv. 8, eabo2794 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R35 GM128618, R01 DK126855 and R01 DK110559 and an Alfred P. Sloan Fellowship (A.S.D.). S.N.C. acknowledges an American Heart Association Postdoctoral Fellowship and a National Institutes of Health K99/R00 Pathway to Independence Award (K99 DK128503). We thank M. Tran for helpful discussions, and we acknowledge BioRender for help with figure creation. Correspondence should be addressed to S.N.C. and A.S.D.

Author information

Authors and Affiliations

Authors

Contributions

G.D.D’A., S.N.C. and A.S.D. contributed to discussions and wrote the manuscript.

Corresponding authors

Correspondence to Snehal N. Chaudhari or A. Sloan Devlin.

Ethics declarations

Competing interests

A.S.D. is an ad hoc consultant for Takeda Pharmaceuticals, Axial Therapeutics and Ferring Pharmaceuticals. S.N.C. is an ad hoc consultant for Metis Therapeutics. G.D.D’A. declares no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Agostino, G.D., Chaudhari, S.N. & Devlin, A.S. Host–microbiome orchestration of the sulfated metabolome. Nat Chem Biol 20, 410–421 (2024). https://doi.org/10.1038/s41589-023-01526-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01526-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing