Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced mapping of small-molecule binding sites in cells

An Author Correction to this article was published on 11 January 2024

This article has been updated

Abstract

Photoaffinity probes are routinely utilized to identify proteins that interact with small molecules. However, despite this common usage, resolving the specific sites of these interactions remains a challenge. Here we developed a chemoproteomic workflow to determine precise protein binding sites of photoaffinity probes in cells. Deconvolution of features unique to probe-modified peptides, such as their tendency to produce chimeric spectra, facilitated the development of predictive models to confidently determine labeled sites. This yielded an expansive map of small-molecule binding sites on endogenous proteins and enabled the integration with multiplexed quantitation, increasing the throughput and dimensionality of experiments. Finally, using structural information, we characterized diverse binding sites across the proteome, providing direct evidence of their tractability to small molecules. Together, our findings reveal new knowledge for the analysis of photoaffinity probes and provide a robust method for high-resolution mapping of reversible small-molecule interactions en masse in native systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview and benchmarking of chemoproteomic SoL analysis of photoaffinity probes.
Fig. 2: Photoaffinity probe-labeled peptides generate chimeric spectra.
Fig. 3: Dizco workflow increases depth of SoL experiments and confidence of label locations.
Fig. 4: Integration of SoL with multiplexed, quantitative proteomics.
Fig. 5: Proteome-wide, site-specific, concentration-dependent probe–protein interaction profiles.
Fig. 6: Global knowledge-based analysis of ligandable binding sites.

Similar content being viewed by others

Data availability

The Uniprot Homo sapiens proteome database (downloaded July 2020; 74,782 sequences) was used for proteomic searches. MS datasets have been deposited on ProteomeXchange as follows: Benchmark SoL (PXD044869) and whole protein (PXD044870). TMT pilot SoL (PXD044886) and whole protein (PXD044887). TMT dose nonenantiomers SoL (PXD044881) and whole protein (PXD044882). TMT dose enantiomers SoL (PXD044883) and whole protein (PXD044884). Molecular modeling.pdb files have been uploaded to the Zenodo repository and can be accessed through https://doi.org/10.5281/zenodo.8326534. Source data are provided with this paper.

Code availability

Scripts developed in this work are available at https://github.com/jmwozniak/DizcoProcessing and have been uploaded to Zenodo85.

Change history

References

  1. Anderson, A. C. The process of structure-based drug design. Chem. Biol. 10, 787–797 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Sugiki, T. et al. Current NMR techniques for structure-based drug discovery. Molecules 23, 148 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maveyraud, L. & Mourey, L. Protein X-ray crystallography and drug discovery. Molecules 25, 1030 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Schreiber, S. L. The rise of molecular glues. Cell 184, 3–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Leroux, A. E. & Biondi, R. M. Renaissance of allostery to disrupt protein kinase interactions. Trends Biochem. Sci. 45, 27–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, P., Clausen, M. H. & Nielsen, T. E. Allosteric small-molecule kinase inhibitors. Pharmacol. Ther. 156, 59–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Meijer, F. A. et al. Allosteric small molecule modulators of nuclear receptors. Mol. Cell. Endocrinol. 485, 20–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Lu, S. & Zhang, J. Small molecule allosteric modulators of G-protein-coupled receptors: drug–target interactions. J. Med. Chem. 62, 24–45 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kambe, T. et al. Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells. J. Am. Chem. Soc. 136, 10777–10782 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hulce, J. J. et al. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10, 259–264 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li, Z. et al. Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. Angew. Chem. Int. Ed. Engl. 52, 8551–8556 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Parker, C. G. & Pratt, M. R. Click chemistry in proteomic investigations. Cell 180, 605–632 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hacker, S. M. et al. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 9, 1181–1190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith, E. & Collins, I. Photoaffinity labeling in target- and binding-site identification. Future Med. Chem. 7, 159–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Burton, N. R., Kim, P. & Backus, K. M. Photoaffinity labelling strategies for mapping the small molecule–protein interactome. Org. Biomol. Chem. 19, 7792–7809 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. West, A. V. & Woo, C. M. Photoaffinity labeling chemistries used to map biomolecular interactions. Isr. J. Chem. https://doi.org/10.1002/ijch.202200081 (2023).

  19. Conway, L. P. et al. Evaluation of fully-functionalized diazirine tags for chemical proteomic applications. Chem. Sci. 12, 7839–7847 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mackinnon, A. L. & Taunton, J. Target identification by diazirine photo-cross-linking and click chemistry. Curr. Protoc. Chem. Biol. 1, 55–73 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shi, H. et al. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes. J. Am. Chem. Soc. 134, 3001–3014 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Parker, C. G. et al. Chemical proteomics identifies SLC25A20 as a functional target of the ingenol class of actinic keratosis drugs. ACS Cent. Sci. 3, 1276–1285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Conway, L. P., Li, W. & Parker, C. G. Chemoproteomic-enabled phenotypic screening. Cell Chem. Biol. 28, 371–393 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Kotake, Y. et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat. Chem. Biol. 3, 570–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, K. et al. Identification of malate dehydrogenase 2 as a target protein of the HIF-1 inhibitor LW6 using chemical probes. Angew. Chem. Int. Ed. Engl. 52, 10286–10289 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Parker, C. G. et al. Ligand and target discovery by fragment-based screening in human cells. Cell 168, e529 (2017).

    Article  Google Scholar 

  27. Wang, Y. et al. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs. Nat. Chem. 11, 1113–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wright, M. H. & Sieber, S. A. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat. Prod. Rep. 33, 681–708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, W. & Baskin, J. M. Photoaffinity labeling approaches to elucidate lipid–protein interactions. Curr. Opin. Chem. Biol. 69, 102173 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka, Y. & Kohler, J. J. Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc. 130, 3278–3279 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Sakurai, K. Photoaffinity probes for identification of carbohydrate-binding proteins. Asian J. Org. Chem. 4, 116–126 (2015).

    Article  CAS  Google Scholar 

  32. Homan, R. A. et al. A chemical proteomic map of heme–protein interactions. J. Am. Chem. Soc. 144, 15013–15019 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. West, A. V. et al. Labeling preferences of diazirines with protein biomolecules. J. Am. Chem. Soc. 143, 6691–6700 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Ziemianowicz, D. S. et al. Amino acid insertion frequencies arising from photoproducts generated using aliphatic diazirines. J. Am. Soc. Mass Spectrom. 28, 2011–2021 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Iacobucci, C. et al. Carboxyl-photo-reactive MS-cleavable cross-linkers: unveiling a hidden aspect of diazirine-based reagents. Anal. Chem. 90, 2805–2809 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Fu, Y. & Qian, X. Transferred subgroup false discovery rate for rare post-translational modifications detected by mass spectrometry. Mol. Cell. Proteom. 13, 1359–1368 (2014).

    Article  CAS  Google Scholar 

  37. Yuan, Z.-F. et al. Evaluation of proteomic search engines for the analysis of histone modifications. J. Proteome Res. 13, 4470–4478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, X. et al. ISPTM: an iterative search algorithm for systematic identification of post-translational modifications from complex proteome mixtures. J. Proteome Res. 12, 3831–3842 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flaxman, H. A., Miyamoto, D. K. & Woo, C. M. Small molecule interactome mapping by photo-affinity labeling (SIM-PAL) to identify binding sites of small molecules on a proteome-wide scale. Curr. Protoc. Chem. Biol. 11, e75 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Mertins, P. et al. iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol. Cell. Proteom. 11, 014423 (2012).

    Article  Google Scholar 

  42. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, C. et al. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat. Methods 11, 79–85 (2014).

    Article  PubMed  Google Scholar 

  44. Cisar, J. S. & Cravatt, B. F. Fully functionalized small-molecule probes for integrated phenotypic screening and target identification. J. Am. Chem. Soc. 134, 10385–10388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Speers, A. E. & Cravatt, B. F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc. 127, 10018–10019 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Houel, S. et al. Quantifying the impact of chimera MS/MS spectra on peptide identification in large-scale proteomics studies. J. Proteome Res. 9, 4152–4160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Käll, L. et al. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923–925 (2007).

    Article  PubMed  Google Scholar 

  48. Taus, T. et al. Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10, 5354–5362 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Beausoleil, S. A. et al. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24, 1285–1292 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Savitski, M. M. et al. Confident phosphorylation site localization using the Mascot Delta Score. Mol. Cell. Proteom. 10, 003830 (2011).

    Article  Google Scholar 

  51. Kong, A. T. et al. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McAlister, G. C. et al. Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal. Chem. 84, 7469–7478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Simister, P. C., Burton, N. M. & Brady, R. L. Phosphotyrosine recognition by the Raf kinase inhibitor protein. Forum Immunopath. Dis. Ther. https://doi.org/10.1615/ForumImmunDisTher.v2.i1.70 (2011).

  54. Eathiraj, S., Pan, X., Ritacco, C. & Lambright, D. G. Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature 436, 415–419 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng, X. et al. Structure-based identification of ureas as novel nicotinamide phosphoribosyltransferase (Nampt) inhibitors. J. Med. Chem. 56, 4921–4937 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Robin, A. Y. et al. Crystal structure of Bax bound to the BH3 peptide of Bim identifies important contacts for interaction. Cell Death Dis. 6, e1809 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    Article  PubMed  Google Scholar 

  58. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Le Guilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinform. 10, 168 (2009).

    Article  Google Scholar 

  61. Ryan, K. et al. Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1. J. Biol. Chem. 296, 100251 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gustafsson, R. et al. Crystal structure of the emerging cancer target MTHFD2 in complex with a substrate-based inhibitor. Cancer Res. 77, 937–948 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Kursula, P. et al. High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I. J. Mol. Biol. 347, 189–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Ogasawara, D. et al. Discovery and optimization of selective and in vivo active inhibitors of the lysophosphatidylserine lipase α/β-hydrolase domain-containing 12 (ABHD12). J. Med Chem. 62, 1643–1656 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Holcomb, M. et al. Evaluation of AlphaFold2 structures as docking targets. Protein Sci. 32, e4530 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Keller, A. et al. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Müller, M. Q. et al. Cleavable cross-linker for protein structure analysis: reliable identification of cross-linking products by tandem MS. Anal. Chem. 82, 6958–6968 (2010).

    Article  PubMed  Google Scholar 

  69. Kao, A. et al. Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol. Cell. Proteom. 10, 002212 (2011).

    Article  Google Scholar 

  70. Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Adam, G. C., Cravatt, B. F. & Sorensen, E. J. Profiling the specific reactivity of the proteome with non-directed activity-based probes. Chem. Biol. 8, 81–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Saghatelian, A. et al. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl Acad. Sci. USA 101, 10000–10005 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abbasov, M. E. et al. A proteome-wide atlas of lysine-reactive chemistry. Nat. Chem. 13, 1081–1092 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Crowley, V. M., Thielert, M. & Cravatt, B. F. Functionalized scout fragments for site-specific covalent ligand discovery and optimization. ACS Cent. Sci. 7, 613–623 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gerry, C. J. & Schreiber, S. L. Unifying principles of bifunctional, proximity-inducing small molecules. Nat. Chem. Biol. 16, 369–378 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Elias, J. E. et al. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat. Methods 2, 667–675 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Riniker, S. & Landrum, G. A. Better informed distance geometry: using what we know to improve conformation generation. J. Chem. Inf. Model 55, 2562–2574 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Rappe, A. K. et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  CAS  Google Scholar 

  82. Word, J. M. et al. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 285, 1735–1747 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Forli, S. et al. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 11, 905–919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Santos-Martins, D. et al. Accelerating AutoDock4 with GPUs and gradient-based local search. J. Chem. Theory Comput. 17, 1060–1073 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wozniak, J. jmwozniak/DizcoProcessing: Dizco Processing (v.1.0.0). https://doi.org/10.5281/zenodo.10079747 (2023).

Download references

Acknowledgements

This work was supported by the National Institute of Allergic and Infectious Diseases NIAID/R01 AI156268 (C.G.P.), 1U19AII71443-01 (C.G.P. and S.F.) and T32AI007244-39 (J.M.W.) as well as National Institutes of Health grant R01GM069832 (S.F.).

Author information

Authors and Affiliations

Authors

Contributions

C.G.P. and J.M.W. conceived the project. J.M.W. and W.L. developed chemoproteomic methods and performed chemoproteomic experiments. J.M.W. developed the chemoproteomic analytical workflow with input from A.D. W.L. and L.-Y.C. performed gel-based and CETSA validation experiments. A.J. synthesized compounds. S.F. and P.G. performed molecular docking analyses. All authors contributed to data analysis and interpretation. C.G.P. and J.M.W. wrote the paper with input from all authors.

Corresponding author

Correspondence to Christopher G. Parker.

Ethics declarations

Competing interests

C.G.P. is a cofounder and scientific advisor to Belharra Therapeutics, a biotechnology company interested in using chemical proteomic methods to develop small-molecule therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Marcus Bantscheff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of MultiPSM and ptmRS probe localization.

(a) Overlap of MultiPSM and ptmRS locations for all unique peptides for each benchmark probe. (b) Example spectra where ptmRS calls a single probe modified location (L9) but there is more evidence for other locations. Ions are colored according to whether they are consistent with probe N-terminal to L9 (red), C-terminal to L9 (blue) or localized to L9 and other locations (black). Unmatched fragment ions are shown in light gray. (c) Quantification of fragment ions shown in panel b.

Extended Data Fig. 2 Development of a predictive model for spectra containing photo-affinity probe labeled peptides.

(a) Predictive abilities of spectral features for identifying probe-labeled peptides (all probes merged in plots). (b) Confusion matrix of final predictive model trained on and applied to all probes. (c) Split confusion matrix of predictive models trained on individual probes and applied to all other individual probes.

Extended Data Fig. 3 Integration of Dizco model with MSFragger.

(a) ROC curves for predicting probe labeled peptides generated from MSFragger output (using a custom delta score = hyperscore - nextscore and retention time difference from unlabeled peptide of same length). (b) Overlap of unique probe-labeled peptides from Sequest and MSFragger searches.

Extended Data Fig. 4 Extended validation of stereoselective probe-target interactions.

(a) GSTM3 concentration plot and probe label site proximal to the active site (PDB: 3GTU). (b) Immunoblot analysis and quantification of GSTM3 stereoselective probe binding. (c) Immunoblot analysis of competitive blockade of probe (S)-9-NAMPT interaction using a cognate competitor molecule (S)-9c in cells. (d) Immunoblot analysis of competitive blockade of probe (R)-9-NAMPT interaction using a cognate competitor molecule (R)-9c in cells. Each immunoblot displayed is representative of two independent experiments. (PD = pulldown).

Source data

Extended Data Fig. 5 Proteins possessing multiple binding sites with varying EC50 values.

For all structures, residues labeled by probes are colored red or light red for probe 3 and blue or light blue for probe 8. The remainder of each detected peptide is colored black. Active/other indicated sites are colored green and co-resolved ligands are colored yellow. CYP51A1 probe 3 concentration plot (a), peptide plots (b) and label sites (c; PDB: 6UEZ). SoL-2a/b refers to two unique peptides that support the same high EC50 binding site (SoL-2b is absent from presented PDB structure, but proximity to SoL-2a was determined from Alpha Fold structure). NENF probe 3 concentration plot (d), peptide plots (e) and label sites (f; AF-Q9UMX5-F1-model_v2). SoL-1a/b refers to two unique peptides that support the same low EC50 binding site. SLC25A15 probe 8 concentration plot (g), peptide plots (h) and label sites (i; AF-Q9Y619-F1-model_v2). All calculated EC50 values are approximations.

Extended Data Fig. 6 Extended orthogonal validation of probe-target interactions.

(a) Cellular thermal shift assay (CETSA) temperature gradient and quantification of probe 8-ACAT2 interaction. (b) CETSA dose analysis of probe 8-ACAT2 interaction. (c) Probe 8-ACAT2 concentration plot from proteomics experiment. (d) CETSA temperature gradient and quantification of probe 3-EPHX1 interaction. (e) CETSA dose analysis of probe 3-EPHX1 interaction. (f) Probe 3-EPHX1 concentration plot from proteomics experiment. (g) CETSA temperature gradient and quantification of probe 6-PMPCA interaction. (h) CETSA dose analysis of probe 6-PMPCA interaction. Each immunoblot displayed is representative of two independent experiments.

Source data

Extended Data Fig. 7 Extended orthogonal validation of functional sites.

(a) MTHFD2 probe 6 label sites overlapping with LY345899-binding site (PDB: 5TC4). (b) Immunoblot analysis of competitive blockade of probe 6-MTHFD2 interaction using LY345899 in cells. (c) ACAT2 probe 8 label sites overlapping with CoA-binding site (PDB: 1WL4). (d) Immunoblot analysis of competitive blockade of probe 8-ACAT2 interaction using CoA. (e) Immunoblot analysis of competitive blockade of probe 3-ABHD12 interaction using DO264 (see Supplementary Figure 12a for corresponding ABHD12 structure and probe 3 peptide plot) in cells. Each immunoblot displayed is representative of two independent experiments. (PD = pulldown).

Source data

Extended Data Fig. 8 Extended orthogonal validation of sites of unknown function.

(a) Depiction of probe label sites overlapping with sites of unknown function for probe 6-PMPCA (AF-Q10713-F1-model_v2) interaction. Depiction of probe label sites overlapping with sites of unknown function and immunoblot analysis and quantification of probe 6-ACAD9 (AF-Q9H845-F1-model_v2) (b-c), and probe 3-PCYO1XL (AF-Q8NBM8-F1-model_v2) (d-e) interactions in cells. Immunoblot analysis and quantification of probe 3-GDI2 (f) and probe 6-CDK1 (g) interactions (see Fig. 6i,k for corresponding structures and peptide plots) in cells. Each immunoblot displayed is representative of two independent experiments. (PD = pulldown).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, notes, chemical synthesis and characterization.

Reporting Summary

Supplementary Data 1

Whole-protein and site-of-labeling proteomics data in HEK293T cells (Supplementary Tables 1–16). Table titles and legends are within the file.

Source data

Source Data Fig. 5

Uncropped blots of western blot images.

Source Data Fig. 5

Quantification of western blot images.

Source Data Fig. 6

Uncropped blots of western blot images.

Source Data Extended Data Fig. 4

Uncropped blots of western blot images.

Source Data Extended Data Fig. 4

Quantification of western blot images.

Source Data Extended Data Fig. 6

Uncropped blots of western blot images.

Source Data Extended Data Fig. 6

Quantification of western blot images.

Source Data Extended Data Fig. 7

Uncropped blots of western blot images.

Source Data Extended Data Fig. 8

Uncropped blots of western blot images.

Source Data Extended Data Fig. 8

Quantification of western blot images.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wozniak, J.M., Li, W., Governa, P. et al. Enhanced mapping of small-molecule binding sites in cells. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-023-01514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-023-01514-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research