Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DeKinomics pulse-chases kinase functions in living cells

Abstract

Cellular context is crucial for understanding the complex and dynamic kinase functions in health and disease. Systematic dissection of kinase-mediated cellular processes requires rapid and precise stimulation (‘pulse’) of a kinase of interest, as well as global and in-depth characterization (‘chase’) of the perturbed proteome under living conditions. Here we developed an optogenetic ‘pulse-chase’ strategy, termed decaging kinase coupled proteomics (DeKinomics), for proteome-wide profiling of kinase-driven phosphorylation at second-timescale in living cells. We took advantage of the ‘gain-of-function’ feature of DeKinomics to identify direct kinase substrates and further portrayed the global phosphorylation of understudied receptor tyrosine kinases under native cellular settings. DeKinomics offered a general activation-based strategy to study kinase functions with high specificity and temporal resolution under living conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Establishment and characterization of DeKinomics’ temporal resolution in vitro and in living cells.
Fig. 2: Characterization of DeKinomics’ temporal resolution in phosphoproteome.
Fig. 3: DeKinomics-coupled ultra-deep pTyr proteomics revealed direct SRC substrates.
Fig. 4: SRC regulates UBA1 activity through Y55 phosphorylation.
Fig. 5: DeKinomics profiled dynamic phosphorylation of the understudied RTK TYRO3.

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository72,73 with the dataset identifier PXD039316. Source data are provided with this paper.

Code availability

The custom computer code has been deposited to Zenodo at https://doi.org/10.5281/zenodo.8365329.

References

  1. Altelaar, A. F. M., Munoz, J. & Heck, A. J. R. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat. Rev. Genet. 14, 35–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Hubbard, S. R. & Till, J. H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Karginov, A. V., Ding, F., Kota, P., Dokholyan, N. V. & Hahn, K. M. Engineered allosteric activation of kinases in living cells. Nat. Biotechnol. 28, 743–747 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou, X. X., Fan, L. Z., Li, P., Shen, K. & Lin, M. Z. Optical control of cell signaling by single-chain photoswitchable kinases. Science 355, 836–842 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li, Y., Zhang, Y., Li, X., Yi, S. & Xu, J. Gain-of-function mutations: an emerging advantage for cancer biology. Trends Biochem. Sci. 44, 659–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, G. et al. Bioorthogonal chemical activation of kinases in living systems. ACS Cent. Sci. 2, 325–331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, J. et al. Time-resolved protein activation by proximal decaging in living systems. Nature 569, 509–513 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Chin, J. W. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83, 379–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Gautier, A. et al. Genetically encoded photocontrol of protein localization in mammalian cells. J. Am. Chem. Soc. 132, 4086–4088 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Arbely, E., Torres-Kolbus, J., Deiters, A. & Chin, J. W. Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. J. Am. Chem. Soc. 134, 11912–11915 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Walker, O. S. et al. Photoactivation of mutant isocitrate dehydrogenase 2 reveals rapid cancer-associated metabolic and epigenetic changes. J. Am. Chem. Soc. 138, 718–721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liaunardy-Jopeace, A., Murton, B. L., Mahesh, M., Chin, J. W. & James, J. R. Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells. Nat. Struct. Mol. Biol. 24, 1155–1163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lake, D., Corrêa, S. A. L. & Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci. 73, 4397–4413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanks, S. K. & Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Wan, P. T. C. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Sharma, K. et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Tan, C. S. H. et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science 359, 1170–1177 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, L. C., Song, L. & Haura, E. B. Src kinases as therapeutic targets for cancer. Nat. Rev. Clin. Oncol. 6, 587–595 (2009).

    Article  PubMed  Google Scholar 

  20. Bian, Y. et al. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Nat. Chem. Biol. 12, 959–966 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Mariner, D. J. et al. Identification of Src phosphorylation sites in the catenin p120. J. Biol. Chem. 276, 28006–28013 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Songyang, Z. et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373, 536–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Francavilla, C. et al. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat. Struct. Mol. Biol. 23, 608–618 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Allen, J. J. et al. A semisynthetic epitope for kinase substrates. Nat. Methods 4, 511–516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Embogama, D. M. & Pflum, M. K. H. K-BILDS: a kinase substrate discovery tool. Chem. Bio. Chem. 18, 136–141 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Ferrando, I. M. et al. Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics. Mol. Cell. Proteom. 11, 355–369 (2012).

    Article  Google Scholar 

  27. Holt, L. J. et al. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682–1686 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elsässer, S. J., Ernst, R. J., Walker, O. S. & Chin, J. W. Genetic code expansion in stable cell lines enables encoded chromatin modification. Nat. Methods 13, 158–164 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barghout, S. H. & Schimmer, A. D. E1 enzymes as therapeutic targets in cancer. Pharmacol. Rev. 73, 1–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Hann, Z. S. et al. Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Proc. Natl Acad. Sci. USA 116, 15475–15484 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He, X., Ma, B., Chen, Y., Guo, J. & Niu, W. Genetic encoding of a nonhydrolyzable phosphotyrosine analog in mammalian cells. Chem. Commun. 58, 5897–5900 (2022).

    Article  CAS  Google Scholar 

  32. Lv, Z. et al. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1. J. Biol. Chem. 292, 12089–12099 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frangini, A. et al. The aurora B kinase and the polycomb protein Ring1B combine to regulate active promoters in quiescent lymphocytes. Mol. Cell 51, 647–661 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Mevissen, T. E. T. & Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159–192 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Zhimin, L. & Tony, H. Degradation of activated protein kinases by ubiquitination. Annu. Rev. Biochem. 78, 435–475 (2009).

    Article  Google Scholar 

  37. Pottier, C. et al. Tyrosine kinase inhibitors in cancer: breakthrough and challenges of targeted therapy. Cancers 12, 731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Oh, D.-Y. & Bang, Y.-J. HER2-targeted therapies—a role beyond breast cancer. Nat. Rev. Clin. Oncol. 17, 33–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smart, S., Vasileiadi, E., Wang, X., DeRyckere, D. & Graham, D. The emerging role of TYRO3 as a therapeutic target in cancer. Cancers 10, 474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hsu, P.-L., Jou, J. & Tsai, S.-J. TYRO3: a potential therapeutic target in cancer. Exp. Biol. Med. 244, 83–99 (2019).

    Article  CAS  Google Scholar 

  43. Graham, D. K., DeRyckere, D., Davies, K. D. & Earp, H. S. The TAM family: phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer. Nat. Rev. Cancer 14, 769–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Chien, C.-W. et al. Targeting TYRO3 inhibits epithelial–mesenchymal transition and increases drug sensitivity in colon cancer. Oncogene 35, 5872–5881 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Casado, P. et al. Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci. Signal. 6, rs6 (2013).

    Article  PubMed  Google Scholar 

  46. Murtuza, A. et al. Novel third-generation EGFR tyrosine kinase inhibitors and strategies to overcome therapeutic resistance in lung cancer. Cancer Res. 79, 689–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Otto, T. & Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 17, 93–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ke, M. et al. Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics. Nat. Commun. 12, 71 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lobingier, B. T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350–360.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Paek, J. et al. Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169, 338–349.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Songyang, Z. et al. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. CB 4, 973–982 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Tang, S. et al. Mechanism-based traps enable protease and hydrolase substrate discovery. Nature 602, 701–707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, Y. et al. Spatiotemporally resolved subcellular phosphoproteomics. Proc. Natl Acad. Sci. USA 118, e2025299118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi, Y. et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature 569, 131–135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, W. et al. Tyrosine phosphorylation of protein kinase C-delta in response to its activation. J. Biol. Chem. 269, 2349–2352 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Chen, W., Chen, L. & Tian, R. An integrated strategy for highly sensitive phosphoproteome analysis from low micrograms of protein samples. Analyst 143, 3693–3701 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Yao, Y. et al. An immobilized titanium (IV) ion affinity chromatography adsorbent for solid phase extraction of phosphopeptides for phosphoproteome analysis. J. Chromatogr. A 1498, 22–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.r-project.org/

  62. Kumar, L. & Futschik, M. E. Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2, 5–7 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J. Integr. Biol. 16, 284–287 (2012).

    Article  CAS  Google Scholar 

  64. Carlson, M. org.Hs.eg.db: Genome wide annotation for Human. Bioconductor https://www.bioconductor.org/packages/org.Hs.eg.db/ (2019).

  65. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Colaert, N., Helsens, K., Martens, L., Vandekerckhove, J. & Gevaert, K. Improved visualization of protein consensus sequences by iceLogo. Nat. Methods 6, 786–787 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  68. Swinton, J. Vennerable: Venn and Euler area-proportional diagrams. GitHub https://github.com/js229/Vennerable (2021).

  69. Kolde, R. pheatmap: Pretty Heatmaps. CRAN https://cran.r-project.org/package=pheatmap (2019).

  70. Deeb, S. J., D’Souza, R. C. J., Cox, J., Schmidt-Supprian, M. & Mann, M. Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol. Cell. Proteom. 11, 77–89 (2012).

    Article  CAS  Google Scholar 

  71. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, T. et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 50, D1522–D1527 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Ma, J. et al. Iprox: an integrated proteome resource. Nucleic Acids Res. 47, D1211–D1217 (2019).

    Article  PubMed  Google Scholar 

  74. Gillen, C. M. & Forbush, B. Functional interaction of the K-Cl cotransporter (KCC1) with the Na-K-Cl cotransporter in HEK-293 cells. Am. J. Physiol. Cell Physiol. 276, C328–C336 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant nos. 2021YFA1302603 (P.R.C.), 2021YFA1301601 (R.T.), 2021YFA1301602 (R.T.), 2021YFA1302603 (R.T.), 2022YFC3401104 (R.T.) and 2020YFE0202200 (R.T.) from the National Key Research and Development Program of China; grant nos. 21937001 (P.R.C.), 22137001 (P.R.C.), 91753000 (P.R.C.), 92253304 (R.T.) and 22125403 (R.T.) from the National Natural Science Foundation of China; grant no. 2019B151502050 (R.T.) from the Guangdong Provincial Fund for Distinguished Young Scholars; grant nos. JCYJ20200109141212325 (R.T.), JSGGZD20220822095200001 (R.T.) and JCYJ20210324120210029 (R.T.) from the Shenzhen Innovation of Science and Technology Commission; grant no. Z200010 from the Beijing Natural Science Foundation (P.R.C.); New Cornerstone Science Foundation through the New Cornerstone Investigator Program (P.R.C.) and the XPLORER PRIZE (P.R.C.). We thank J. Guo (University of Nebraska-Lincoln) for sharing the CMF-RS plasmid. We thank M. Pan and Q. Zheng (Protein Design and Synthesis Center, Institute of Translational Medicine, Shanghai Jiao Tong University) for providing recombinant E2 and Ub-FITC proteins. We thank Y. Sun and P. Bai (Southern University of Science and Technology) for providing primary PDAC cells.

Author information

Authors and Affiliations

Authors

Contributions

P.R.C. and R.T. conceived and supervised the study. Y.W. conceived all experiments and performed cell culture and treatment, kinase-ONPK expression and decaging, proteomics data analysis, immunofluorescence experiments, stable cell line constructions, ubiquitin thioester formation assays and other unspecified experiments. Y.W., W.C. and Q.K. performed pTyr proteomics and Flag IP-MS. Y.W., W.C., Y.M. and Y.Q. performed phosphoproteomics experiments. R.Z. and Y.L. synthesized ONPK. A.H. and M.K. performed LC–MS analysis of ONPK decaging rate. Y.W., R.W., W.S.C.N., H.Z. and J.W. performed CMF site-specific incorporation, protein purification and kinase phosphorylation assays. Y.W., R.T. and P.R.C. wrote the paper with inputs from all authors.

Corresponding authors

Correspondence to Ruijun Tian or Peng R. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Kazuya Machida, Yonghao Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterization of ONPK decaging in vitro and in living cells.

a, Liquid chromatography-mass spectrometry (LC-MS) analysis of remaining ONPK with UV irradiation. Error bars represent mean ± SD (n = 3 independent experiments). b, The MS/MS spectrum of the ONP caged peptide (residue 295–318 of SRC) with neutral loss of ONP group. ONP, ONP modification; OX, oxidation modification.

Source data

Extended Data Fig. 2 Validation of DeKinomics’ temporal resolution in phosphoproteome.

a, The numbers of identified phosphoproteins, phosphopeptides and phosphosites in DeKinomics study of BRAF with phosphorylated residue numbers from different classes according to localization probability and distribution of phosphorylated amino acids. b, Quantitative phosphoproteomics revealed the changes of phosphosites in MAPK signaling pathway upon BRAF activation. c, The KEGG pathway enrichment analysis of phosphosites with the Euclidean distance among the smallest 10%. According to the gene ratio, the top 10 pathways were depicted. Two-sided hypergeometric test followed by Benjamini-Hochberg correlation. KEGG, Kyoto Encyclopedia of Genes and Genomes. d, Dynamics of MAPK signaling pathway phosphosites that increased upon BRAF activation were showed in detail. e, Validation of phosphorylation dynamics in MAPK signaling pathway in repetitious experiments. Error bars represent mean ± SD (n = 3 independent experiments).

Source data

Extended Data Fig. 3 SRC-driven pTyr proteome dynamics were deeply profiled by DeKinomics.

a, Western blotting validation of rapid activation of tyrosine kinase SRC (n = 2). b, The numbers of identified pTyr proteins, peptides and phosphosites in the SRC study, with the pTyr residue number from different classes according to localization probability. c, Schematic illustration of the time-resolved pTyr proteomics upon UV irradiation as a control experiment. d, Bar graph comparing the unchanged and the significantly changed pTyr sites in UV irradiation experiment. e, Violin plot indicating the increased global pTyr intensity upon SRC activation. The counts of quantified pTyr sites (n) in each time point are indicated in brackets. Box plots show median (center line), the upper and lower quantiles (box), and the minima and maxima of the data (whiskers). f, The Pearson correlation of pTyr intensity between the biological replicates. g, GO enrichment analysis of pTyr sites from different clusters.

Source data

Extended Data Fig. 4 Validating SRC substrates with monoclonal stable cell line expressing SRC-ONPK.

a, Volcano plots indicating the increased pTyr sites within 6 s upon SRC activation. n = 3 independent experiments; two-sided Student’s t-test. b, Venn diagram indicating that the SRC substrate candidates were determined with two criteria. c, pPiggyBac plasmid used to generate the HEK293T stable cell line that expressing ONPK-incorporated SRC protein. IRES, internal ribosome entry sites; NeoR, Neomycine Resistance; PuroR, Puromycine Resistance; copGFP, green fluorescent protein from copepod Pontellina plumate. d, Western blotting analysis indicating that the expression level of SRC-ONPK could be tuned by ONPK concentration (n = 2). e, Confocal immunofluorescence imaging confirming same SRC localization between exogenous and endogenous SRC. Scale bars: 5 μm (n = 3). f, Schematic illustration of PRM validation for physiological relevance between SRC and downstream pTyr sites (n = 3). g, Histogram indicating pTyr sites with i) the max intensity of their corresponding precursor, ii) Evidence count > 15 would be conduct to PRM validation. The filters including precursor charge < 4, random selection to shorten the list, manual checking for duplication transition were also applied for determining the final list for PRM assay. h, Veen diagram indicating the number of pTyr sites that were studied, quantified and validated in PRM assay respectively. i, Schematic illustration of biological functions of the validated SRC substrates by PRM.

Source data

Extended Data Fig. 5 Control experiments for in vitro kinase phosphorylation assay.

a, The extracted ion chromatograph (XIC) of the fragment ions of ERK1 pY204 (precursor: VpYENVGLMQQQK++) in compare with PTPN11 pY584 (precursor: IADPEHDHTGFLTEpYVATR++). b, Western blotting estimating the SRC concentration in HEK293T cells (n = 2). Loaded protein amount of #1, #2 and #3 HEK293T lysate were 5.2 μg, 6.0 μg and 6.8 μg respectively. Western blotting bands were quantified by image studio software (LI-COR, v5.2). We took 6.5 μL mg−1 as an estimation for the cell volume of the HEK293T cells74.

Source data

Extended Data Fig. 6 SRC phosphorylated UBA1 and suppressed its enzymatic activity.

a, Dot plot indicating the number of reference reporting post-translational modification (PTM) sites identification on UBA1 in PhosphoSitePlus database (v6.6.0.4). b, Schematic illustration of modified thioester formation assay for measuring the UBA1’s activity. c, Sequence alignment of region where human UBA1 S140 and Y141 (highlighted) located. Asterisks indicate the conserved residues. d, e, Quantitative fluorescence measurements of E2-Ub-FITC thioester formation assay. Error bars represent mean ± SD (n = 3 independent experiments).

Source data

Extended Data Fig. 7 DeKinomics applications on oncogenic RTK variants.

a, Sequence alignment for locating conserved catalytic lysine residue in HER2 and NTRK1. Asterisks indicate the conserved residues. b-c, Schematic illustration of DeKinomics study workflow of HER2-L755S and TPM3-NTRK1 (n = 3). d, Volcano plots indicating the successful profiling of downstream phosphorylation of HER2-L755S. n = 3 independent experiments; two-sided Student’s t-test. e, Fusion protein TPM3-NTRK1 could be rapidly activated and induce downstream Tyr phosphorylation (n = 3 independent experiments). f, Heatmap of pTyr relative abundance indicating autophosphorylation and Tyr phosphorylation on signal transduction protein induced by TPM3-NTRK1 activation.

Source data

Extended Data Fig. 8 DeKinomics study of TYRO3.

a, Sequence alignment for locating conserved catalytic lysine residue in TYRO3. Asterisks indicate the conserved residues. b, Confocal immunofluorescence imaging of exogenous TYRO3-K550ONPK (n = 3). Scale bars: 5 μm. c, Heatmap indicating TYRO3 activation induced TYRO3 autophosphorylation. d, The fuzzy c-means clustering of significantly changed pTyr sites upon TYRO3 activation. e, Venn diagram indicating that TYRO3 candidate substrates were determined with 2 criteria: pTyr sites significantly changed in 0–60 sec (ANOVA) and were in cluster 1 with membership > 0.7 in fuzzy c-means clustering.

Source data

Extended Data Fig. 9 DeKinomics-depicted TYRO3 function.

a, Volcano plot comparisons between TYRO3-activated cells and control cells. n = 3 independent experiments; two-sided Student’s t-test. b, The fuzzy c-means clustering of significantly changed phosphosites in phosphoproteome. c, An overview of early phosphorylation cascades of TYRO3. The annotations of protein function were adopted from Uniprot database.

Source data

Extended Data Fig. 10 Targeting TYRO3-PRKCD axis.

a, Cell proliferation assay to evaluate the effect of inhibitor combination. Primary PDAC cells were isolated from the KPf/fC (KrasLSL-G12D/+;Trp53flox/flox;Pdx1-Cre) PDAC mouse model55. Error bars represent mean ± SD (n = 4 independent experiments); two-sided Student’s t-test. b, Schematic illustration of dual-targeting of the TYRO3-PRKCD signaling axis by inhibitors.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–6.

Reporting Summary

Supplementary Table 1

DeKinomics study of BRAF.

Supplementary Table 2

DeKinomics study of SRC.

Supplementary Table 3

SRC substrate candidates.

Supplementary Table 4

Results of the SRC substrates validation experiment.

Supplementary Table 5

DeKinomics study of HER2 and TPM3-NTRK1.

Supplementary Table 6

TYRO3 study in living cells with DeKinomics.

Supplementary Table 7

KSEA of TYRO3-regulated pSer/pThr sites.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Source Data Fig. 1

Unprocessed western blots/gels.

Source Data Fig. 3

Unprocessed western blots/gels.

Source Data Fig. 4

Unprocessed western blots/gels.

Source Data Fig. 5

Unprocessed western blots/gels.

Source Data Extended Data Fig. 3

Unprocessed western blots/gels.

Source Data Extended Data Fig. 4

Unprocessed western blots/gels.

Source Data Extended Data Fig. 5

Unprocessed western blots/gels.

Source Data Extended Data Fig. 6

Unprocessed western blots/gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, Y., Chen, W., Kong, Q. et al. DeKinomics pulse-chases kinase functions in living cells. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-023-01497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-023-01497-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research