Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metagenomic domain substitution for the high-throughput modification of nonribosomal peptides

Abstract

The modular nature of nonribosomal peptide biosynthesis has driven efforts to generate peptide analogs by substituting amino acid-specifying domains within nonribosomal peptide synthetase (NRPS) enzymes. Rational NRPS engineering has increasingly focused on finding evolutionarily favored recombination sites for domain substitution. Here we present an alternative evolution-inspired approach that involves large-scale diversification and screening. By amplifying amino acid-specifying domains en masse from soil metagenomic DNA, we substitute more than 1,000 unique domains into a pyoverdine NRPS. Initial fluorescence and mass spectrometry screens followed by sequencing reveal more than 100 functional domain substitutions, collectively yielding 16 distinct pyoverdines as major products. This metagenomic approach does not require the high success rates demanded by rational NRPS engineering but instead enables the exploration of large numbers of substitutions in parallel. This opens possibilities for the discovery and production of nonribosomal peptides with diverse biological activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nonribosomal peptide synthesis and metagenomic domain substitution.
Fig. 2: Analysis of candidate recombination sites.
Fig. 3: Experimental testing of candidate recombination sites.
Fig. 4: Diversity of the metagenomic domain substitution libraries.
Fig. 5: Screening and diversity of functional substitutions.
Fig. 6: Pyoverdine yield for top hits.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the main text and its Supplementary Information file. Mass spectrometry data are available from https://doi.org/10.25345/C5S46HG94. The PDB file 6P1J is available from https://doi.org/10.2210/pdb6P1J/pdb. Source data are provided with this paper. Data are also available from the corresponding authors upon request.

Code availability

Code generated during this study is available from https://doi.org/10.5281/zenodo.8361572.

References

  1. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Cook, M. A. & Wright, G. D. The past, present, and future of antibiotics. Sci. Transl. Med. 14, eabo7793 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Felnagle, E. A. et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 5, 191–211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kunakom, S. & Eustaquio, A. S. Natural products and synthetic biology: where we are and where we need to go. mSystems 4, e00113-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abbood, N., Präve, L., Bozhueyuek, K. A. J. & Bode, H. B. A practical guideline to engineering nonribosomal peptide synthetases. Methods Mol. Biol. 2670, 219–234 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. WHO model list of essential medicines. World Health Organization www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02 (2021).

  7. Baltz, R. H. Renaissance in antibacterial discovery from actinomycetes. Curr. Opin. Pharmacol. 8, 557–563 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Bauman, K. D., Butler, K. S., Moore, B. S. & Chekan, J. R. Genome mining methods to discover bioactive natural products. Nat. Prod. Rep. 38, 2100–2129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milshteyn, A., Schneider, J. S. & Brady, S. F. Mining the metabiome: identifying novel natural products from microbial communities. Chem. Biol. 21, 1211–1223 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hover, B. M. et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol. 3, 415–422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Craig, J. W., Chang, F. Y., Kim, J. H., Obiajulu, S. C. & Brady, S. F. Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl. Environ. Microbiol. 76, 1633–1641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown, A. S., Calcott, M. J., Owen, J. G. & Ackerley, D. F. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat. Prod. Rep. 35, 1210–1228 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Winn, M., Fyans, J. K., Zhuo, Y. & Micklefield, J. Recent advances in engineering nonribosomal peptide assembly lines. Nat. Prod. Rep. 33, 317–347 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Baltz, R. H. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth. Biol. 3, 748–758 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Calcott, M. J., Owen, J. G. & Ackerley, D. F. Efficient rational modification of non-ribosomal peptides by adenylation domain substitution. Nat. Commun. 11, 4554 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fleischhacker, K. et al. De novo design and engineering of non-ribosomal peptide synthetases. Nat. Chem. 10, 275–281 (2018).

    Article  PubMed  Google Scholar 

  17. Bozhuyuk, K. A. J. et al. Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat. Chem. 11, 653–661 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Bozhüyük, K. A. J. et al. Evolution inspired engineering of megasynthetases. Preprint at bioRxiv https://doi.org/10.1101/2022.12.02.518901 (2022).

  19. Kries, H., Niquille, D. L. & Hilvert, D. A subdomain swap strategy for reengineering nonribosomal peptides. Chem. Biol. 22, 640–648 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Thong, W. L. et al. Gene editing enables rapid engineering of complex antibiotic assembly lines. Nat. Commun. 12, 6872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baunach, M., Chowdhury, S., Stallforth, P. & Dittmann, E. The landscape of recombination events that create nonribosomal peptide diversity. Mol. Biol. Evol. 38, 2116–2130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Booth, T. J. et al. Bifurcation drives the evolution of assembly-line biosynthesis. Nat. Commun. 13, 3498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhong, L. et al. Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis. Nat. Commun. 12, 296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Charlop-Powers, Z. et al. Global biogeographic sampling of bacterial secondary metabolism. eLife 4, e05048 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Charlop-Powers, Z., Owen, J. G., Reddy, B. V. B., Ternei, M. A. & Brady, S. F. Chemical–biogeographic survey of secondary metabolism in soil. Proc. Natl Acad. Sci. USA 111, 3757–3762 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, R., Li, X. & Lam, K. S. Combinatorial chemistry in drug discovery. Curr. Opin. Chem. Biol. 28, 117–126 (2017).

    Article  Google Scholar 

  27. Marahiel, M. A., Stachelhaus, T. & Mootz, H. D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97, 2651–2673 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Baltz, R. H. Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. J. Ind. Microbiol. Biotechnol. 46, 281–299 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Voigt, C. A., Martinez, C., Wang, Z. G., Mayo, S. L. & Arnold, F. H. Protein building blocks preserved by recombination. Nat. Struct. Biol. 9, 553–558 (2002).

    CAS  PubMed  Google Scholar 

  31. Tan, K. M. et al. Structures of teixobactin-producing nonribosomal peptide synthetase condensation and adenylation domains. Curr. Res. Struct. Biol. 2, 14–24 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y. et al. ThreaDomEx: a unified platform for predicting continuous and discontinuous protein domains by multiple-threading and segment assembly. Nucleic Acids Res. 45, W400–W407 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steiniger, C., Hoffmann, S. & Sussmuth, R. D. Desymmetrization of cyclodepsipeptides by assembly mode switching of iterative nonribosomal peptide synthetases. ACS Synth. Biol. 8, 661–667 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Yakimov, M. M., Giuliano, L., Timmis, K. N. & Golyshin, P. N. Recombinant acylheptapeptide lichenysin: high level of production by Bacillus subtilis cells. J. Mol. Microbiol. Biotechnol. 2, 217–224 (2000).

    CAS  PubMed  Google Scholar 

  35. Doekel, S. et al. Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus. Microbiology (Reading) 154, 2872–2880 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Mootz, H. D., Schwarzer, D. & Marahiel, M. A. Construction of hybrid peptide synthetases by module and domain fusions. Proc. Natl Acad. Sci. USA 97, 5848–5853 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Linhart, C. & Shamir, R. The degenerate primer design problem: theory and applications. J. Comput. Biol. 12, 431–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article  Google Scholar 

  39. Calcott, M. J., Owen, J. G., Lamont, I. L. & Ackerley, D. F. Biosynthesis of novel pyoverdines by domain substitution in a nonribosomal peptide synthetase of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 80, 5723–5731 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rehm, K., Vollenweider, V., Kümmerli, R. & Bigler, L. A comprehensive method to elucidate pyoverdines produced by fluorescent Pseudomonas spp. by UHPLC-HR-MS/MS. Anal. Bioanal. Chem. 414, 2671–2685 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyer, J.-M. et al. Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21, 259–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Reetz, M. T. & Carballeira, J. D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2, 891–903 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Acevedo-Rocha, C. G., Hoebenreich, S. & Reetz, M. T. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution. Methods Mol. Biol. 1179, 103–128 (2014).

    Article  PubMed  Google Scholar 

  44. Yang, J. Y. et al. Molecular networking as a dereplication strategy. J. Nat. Prod. 76, 1686–1699 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Owen, J. G., Calcott, M. J., Robins, K. J. & Ackerley, D. F. Generating functional recombinant NRPS enzymes in the laboratory setting via peptidyl carrier protein engineering. Cell Chem. Biol. 23, 1395–1406 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Evans, B. S., Chen, Y. Q., Metcalf, W. W., Zhao, H. M. & Kelleher, N. L. Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Chem. Biol. 18, 601–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Azuma, T., Harrison, G. I. & Demain, A. L. Isolation of a gramicidin S hyperproducing strain of Bacillus brevis by use of a flourescence activated cell sorting system. Appl. Microbiol. Biotechnol. 38, 173–178 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Abdallah, M. A. & Meyer, J. M. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Microbiology 107, 319–328 (1978).

    Google Scholar 

  51. Xiao, R. & Kisaalita, W. S. Purification of pyoverdines of Pseudomonas fluorescens 2-79 by copper chelate chromatography. Appl. Environ. Microbiol. 61, 3769–3774 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stevenson, L. J., Ackerley, D. F. & Owen, J. G. Preparation of soil metagenome libraries and screening for gene-specific amplicons. Methods Mol. Biol. 2397, 3–17 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Schmid, R. et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 41, 447–449 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ono, K., Muetze, T., Kolishovski, G., Shannon, P. & Demchak, B. CyREST: turbocharging cytoscape access for external tools via a RESTful API. F1000Res. 4, 478 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cornelis, P. Unexpected interaction of a siderophore with aluminum and its receptor. J. Bacteriol. 190, 6541–6543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Royal Society of New Zealand Marsden Fund (grant no. 18-VUW-082 to M.J.C. and G.L.C.), and the Health Research Council of New Zealand (contract 16/172 to D.F.A. and J.G.O.). S.R.M. was supported by a New Zealand Lottery Health Research Scholarship (contract LHR-2020-129624). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.R.M., D.F.A. and M.J.C. conceived and designed the work. S.R.M., E.M.R.M. and M.J.C. performed the experiments. S.R.M. and M.J.C. performed the data analysis and prepared all figures. L.J.S., J.G.O. and M.J.C. created the SL and RX metagenomic libraries. M.J.C., G.L.C., D.F.A. and J.G.O. obtained funding for this study. S.R.M., D.F.A. and M.J.C. wrote the manuscript. S.R.M., G.L.C., J.G.O., D.F.A. and M.J.C. edited the manuscript, and all authors approved the final version.

Corresponding authors

Correspondence to David F. Ackerley or Mark J. Calcott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Donatella de Pascale, Sergey Zotchev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Tables 1–4.

Reporting Summary

Supplementary Data 1

Raw data for Supplementary Fig. 8.

Supplementary Data 2

DNA sequences and oligonucleotides.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messenger, S.R., McGuinniety, E.M.R., Stevenson, L.J. et al. Metagenomic domain substitution for the high-throughput modification of nonribosomal peptides. Nat Chem Biol 20, 251–260 (2024). https://doi.org/10.1038/s41589-023-01485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01485-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing