Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility

Abstract

CRISPR–Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of Campylobacter jejuni Cas9 (CjCas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evoCjCas9, primarily recognizes N4AH and N5HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N3VRYAC PAM site. Moreover, evoCjCas9 exhibits higher nuclease activity than wild-type CjCas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed SpCas9 variants. Combined with deaminases or reverse transcriptases, evoCjCas9 enables robust base and prime editing, with the small size of evoCjCas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PACE and PANCE to broaden the PAM compatibility of CjCas9.
Fig. 2: Characterization of the PAM compatibility of evoCjCas9.
Fig. 3: Indel formation rates of evoCjCas9 compared to CjCas9 and other commonly used RNA-guided endonucleases.
Fig. 4: Base and prime editing with CjCas9 and evoCjCas9.
Fig. 5: In vivo genome editing with compact evoCjCas9 ABE and CBE.

Similar content being viewed by others

Data availability

Plasmids and sequences of evoCjCas9 constructs are available on Addgene: evoCjCas9 (194059), evoCjCas9–ABE8e (194060), evoCjCas9–BE4max (194061), evoCjCas9–eAID (194062), evoCjCas9–PEmax∆RnH (194063), evoCjCas9–TadCDd (202558), LentiGuide_CjCas9-Puro (202564), AAV-P3-evoCjCas9-ABE8e (202559), AAV-hSyn-evoCjCas9-ABE8e (202561), AAV-P3-evoCjCas9-eAID (202562) and AAV-P3-evoCjCas9-TadCDd (202563). Measured editing rates are provided in Supplementary Data 37. DNA-sequencing data are available on NCBI Sequence Read Archive (PRJNA893560). Source data are provided with this paper.

Code availability

Custom code used in the data analysis presented here is available as Supplementary Code 1 and on GitHub (https://github.com/Schwank-Lab/evoCjCas9).

References

  1. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gaudelli, N. M. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yeh, W. H., Chiang, H., Rees, H. A., Edge, A. S. B. & Liu, D. R. In vivo base editing of post-mitotic sensory cells. Nat. Commun. 9, 2184 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deverman, B. E., Ravina, B. M., Bankiewicz, K. S., Paul, S. M. & Sah, D. W. Y. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug Discov. 17, 641–659 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Mendell, J. R. et al. Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 29, 464–488 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng, C. et al. A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver. Mol. Ther. 30, 1343–1351 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Truong, D.-J. J. et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 43, 6450–6458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Böck, D. et al. In vivo prime editing of a metabolic liver disease in mice. Sci. Transl. Med. 14, 9238 (2022).

    Article  Google Scholar 

  20. Davis, J. R. et al. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat. Biomed. Eng. 6, 1272–1283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, H. et al. Adenine base editing in vivo with a single adeno-associated virus vector. GEN Biotechnol. 1, 285–299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, S. et al. Compact Cje3Cas9 for efficient in vivo genome editing and adenine base editing. CRISPR J. 5, 472–486 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller, S. M., Wang, T. & Liu, D. R. Phage-assisted continuous and non-continuous evolution. Nat. Protoc. 15, 4101–4127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pu, J., Disare, M. & Dickinson, B. C. Evolution of C-terminal modification tolerance in full-length and split T7 RNA polymerase biosensors. ChemBioChem 20, 1547–1553 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DeBenedictis, E. A. et al. Systematic molecular evolution enables robust biomolecule discovery. Nat. Methods 19, 55–64 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Badran, A. H. & Liu, D. R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat. Commun. 6, 8425 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamada, M. et al. Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR–Cas9 systems. Mol. Cell 65, 1109–1121 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, T. P. et al. High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs. Nat. Biotechnol. 41, 96–107 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Walton, R. T., Hsu, J. Y., Joung, J. K. & Kleinstiver, B. P. Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nat. Protoc. 16, 1511–1547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakagawa, R. et al. Engineered Campylobacter jejuni Cas9 variant with enhanced activity and broader targeting range. Commun. Biol. 5, 211 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mir, A., Edraki, A., Lee, J. & Sontheimer, E. J. Type II-C CRISPR–Cas9 biology, mechanism, and application. ACS Chem. Biol. 13, 357–365 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu, Z. et al. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol. 18, e3000686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Xu, X. et al. Engineered miniature CRISPR–Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345 (2021).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  40. Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Edraki, A. et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73, 714–726 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Legut, M. et al. High-throughput screens of PAM-flexible Cas9 variants for gene knockout and transcriptional modulation. Cell Rep. 30, 2859–2868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Collias, D. & Beisel, C. L. CRISPR technologies and the search for the PAM-free nuclease. Nat. Commun. 12, 555 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lazzarotto, C. R. et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity. Nat. Biotechnol. 38, 1317–1327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, Z. et al. Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID–Cas9 fusion. FASEB J. 33, 9210–9219 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–848 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Neugebauer, M. E. et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat. Biotechnol. 41, 673–685 (2022).

  49. Marquart, K. F. et al. Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nat. Commun. 12, 5114 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Villiger, L. et al. Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope. Mol. Ther. Nucleic Acids 26, 502–510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nair, N. et al. Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy. Blood 123, 3195–3199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grisch-Chan, H. M. et al. Low-dose gene therapy for murine PKU using episomal naked DNA vectors expressing PAH from its endogenous liver promoter. Mol. Ther. Nucleic Acids 7, 339–349 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sahng, W. P., Moon, Y. A. & Horton, J. D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem. 279, 50630–50638 (2004).

    Article  Google Scholar 

  54. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Kügler, S., Kilic, E. & Bähr, M. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. 10, 337–347 (2003).

    Article  PubMed  Google Scholar 

  56. High-dose AAV gene therapy deaths. Nat. Biotechnol. 38, 910 (2020).

  57. Morales, L., Gambhir, Y., Bennett, J. & Stedman, H. H. Broader implications of progressive liver dysfunction and lethal sepsis in two boys following systemic high-dose AAV. Mol. Ther. 28, 1753–1755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dugar, G. et al. CRISPR RNA-dependent binding and cleavage of endogenous RNAs by the Campylobacter jejuni Cas9. Mol. Cell 69, 893–905 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiao, C. et al. Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science 372, 941–948 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saha, C. et al. Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA. Sci. Adv. 6, 4849–4866 (2020).

    Article  ADS  Google Scholar 

  61. Nguyen Tran, M. T. et al. Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing. Nat. Commun. 11, 4871 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  62. Zhu, H. J. et al. Cloning and analysis of human UroplakinII promoter and its application for gene therapy in bladder cancer. Cancer Gene Ther. 11, 263–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Jüttner, J. et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat. Neurosci. 22, 1345–1356 (2019).

    Article  PubMed  Google Scholar 

  64. Bai, Y., Pontoglio, M., Hiesberger, T., Sinclair, A. M. & Igarashi, P. Regulation of kidney-specific Ksp-cadherin gene promoter by hepatocyte nuclear factor-1β. Am. J. Physiol. Renal Physiol. 283, F839–F851 (2002).

  65. Pacak, C. A., Sakai, Y., Thattaliyath, B. D., Mah, C. S. & Byrne, B. J. Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice. Genet. Vaccines Ther. 6, 13 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gonçalves, M. A. F. V. et al. Transcription factor rational design improves directed differentiation of human mesenchymal stem cells into skeletal myocytes. Mol. Ther. 19, 1331–1341 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li, X., Eastman, E. M., Schwartz, R. J. & Draghia-Akli, R. Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat. Biotechnol. 17, 241–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Zurek, P. J., Knyphausen, P., Neufeld, K., Pushpanath, A. & Hollfelder, F. UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution. Nat. Commun. 11, 6023 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mathis, N. et al. Predicting prime editing efficiency and product purity by deep learning. Nat. Biotechnol. 41, 1151–1159 (2023).

  70. Düring, D. N. et al. Fast retrograde access to projection neuron circuits underlying vocal learning in songbirds. Cell Rep. 33, 108364 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Functional Genomics Center Zurich for technical support and access to instruments at the University of Zurich and ETH Zurich; the Genome Engineering and Measurement Lab at the University of Zurich and ETH Zurich and S. Kreutzer for preparing CHANGE-seq libraries; the mRNA platform at UZH/USZ and S. Pascolo, J. Frei and C. Wyss for production and purification of RNAs; the viral vector facility of UZH and J.-C. Paterna and M. Rauch for production of AAVs; J. Häberle and N. Rimann for support with blood sample analysis; S. Melkonyan for assistance in data visualization; and L. Villiger and members of the Schwank lab for discussions. We thank M. Pacesa for comments on the manuscript. This work was supported by the Swiss National Science Foundation (SNSF) grant numbers 310030_185293 and 310030_214936 (to G.S.) and 31003A_182567 (to M.J.), Novartis Foundation for Medical-Biological Research number FN20-0000000203 (to D.B.), SNSF Spark fellowship number 196287 (to D.B.), the URPP Itinerare (to G.S. and D.B.) and the ETH PhD fellowship (to L.S. and K.F.M.). M.J. is an International Research Scholar of the Howard Hughes Medical Institute and Vallee Scholar of the Bert L & N Kuggie Vallee Foundation.

Author information

Authors and Affiliations

Authors

Contributions

L.S. and G.S. designed the study and wrote the manuscript. L.S., K.F.M., N.M., T.R., C.C., D.B. and J.P.W. performed and analyzed in vitro experiments. L.S., T.R., L.K. and K.F.M. performed and analyzed in vivo experiments. C.C. and M.J. purified proteins and provided field-specific expertise. L.S., N.M., K.F.M., T.R., D.B. and C.C. prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Gerald Schwank.

Ethics declarations

Competing interests

L.S. and G.S. have filed a patent application based on evolved CjCas9 variants (European Patent Application No. 23175382.3). All other authors have no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Feng Gu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Contribution of consensus mutations in CjCas9 on PAM relaxation.

HT-PAMDA characterization of enCjCas9 (top) with introduced PAM relaxing mutations (bottom) illustrating their PAM preference at PAM positions 5 to 8. The log10 rate constant represents the mean of two replicates against two distinct spacer sequences.

Source data

Extended Data Fig. 2 Indel formation with CjCas9 and evoCjCas9 on endogenous target sites.

a,b, Indel frequencies of CjCas9 and evoCjCas9 on 14 non-canonical and 10 canonical PAM sites in HEK293T cells with selection harvested 9 days (a) or without selection 4 days (b) post transfection. Bars (a, b) represent mean with error bars representing standard error of the mean of three independent biological replicates performed on separate days (n = 3). Individual data points as black dots.

Source data

Extended Data Fig. 3 Indel formation rates with CjCas9 and evoCjCas9 at target sites with different PAMs.

Mean indel frequency in self-targeting libraries on canonical (a) and non-canonical (b) PAM sites. Bars represent mean with error bars representing standard error of the mean, with individual data points (n) of biological triplicates shown as black dots (a) and indicated above error bars (a, b). The in vitro PAMDA assay (Fig. 2a) revealed few motifs recognized by CjCas9 that lie outside of the simplified N3VRYAC motif (for example N3MACAN), albeit with low efficiency. We define sequences that fall outside of N3VRYAC as non-canonical motifs for the purpose of simplification.

Source data

Extended Data Fig. 4 Prime editing rates with CjCas9 and evoCjCas9 on endogenous target sites.

Prime editing and corresponding unintended editing frequencies of CjCas9 and evoCjCas9-PE∆RnH on 3 canonical and 7 non-canonical target sites in HEK293T cells. Bars represent mean with error bars representing standard error of the mean. Individual data points of biological replicates (n = 3) as black dots.

Source data

Extended Data Fig. 5 Cytosine base editing with CjCas9 and evoCjCas9 on sites in the Pcsk9 locus.

Editing frequency (C-to-T) with eAID or TadCDd CBEs with one or two C-terminal UGI domains in Neuro-2a cells. Bars represent mean with error bars representing standard error of the mean of three independent biological replicates performed on separate days (n = 3), unless otherwise noted. Individual data points as black dots.

Source data

Extended Data Fig. 6 In vivo genome editing with the evoCjCas9-TadCDd cytosine BE.

Observed editing at the targeted Pcsk9 site with an AAV construct containing the evoCjCas9-TadCDd base editor. Bars represent mean with error bars representing standard error of the mean, with data points shown as black dots representing independent samples.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Table 1, legends for Supplementary Data 1–8 and Supplementary Code 1.

Reporting Summary

Supplementary Data 1

Consensus reads of UMI-linked nanopore sequencing.

Supplementary Data 2

PAM preference of all assessed CjCas9 variants derived with HT-PAMDA.

Supplementary Data 3

Self-targeting library sequences with indel and editing rates generated with CjCas9, evoCjCas9 and BE constructs.

Supplementary Data 4

Self-targeting library sequences with editing rates generated with CjCas9 and evoCjCas9 on target-matched PAM library.

Supplementary Data 5

Self-targeting library sequences with indel rates generated with CjCas9, SaCas9, SauriCas9, SpCas9, Nme2Cas9, CasMINI and TnpB and their PAM-relaxed variants.

Supplementary Data 6

Self-targeting library sequences containing on- and off-target sequences, with indel rates generated by CjCas9, enCjCas9 and evoCjCas9.

Supplementary Data 7

Self-targeting library sequences with editing rates generated with CjCas9–PE∆RnH and evoCjCas9–PE∆RnH in HEK293T and K562 cells.

Supplementary Data 8

Primer sequences used in cloning.

Supplementary Code 1

Collection of scripts used to evaluate Nanopore and NGS sequencing data.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1–6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidheini, L., Mathis, N., Marquart, K.F. et al. Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility. Nat Chem Biol 20, 333–343 (2024). https://doi.org/10.1038/s41589-023-01427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01427-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research