Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thiol-catalyzed formation of NO-ferroheme regulates intravascular NO signaling

Abstract

Nitric oxide (NO) is an endogenously produced signaling molecule that regulates blood flow and platelet activation. However, intracellular and intravascular diffusion of NO are limited by scavenging reactions with several hemoproteins, raising questions as to how free NO can signal in hemoprotein-rich environments. We explore the hypothesis that NO can be stabilized as a labile ferrous heme–nitrosyl complex (Fe2+-NO, NO-ferroheme). We observe a reaction between NO, labile ferric heme (Fe3+) and reduced thiols to yield NO-ferroheme and a thiyl radical. This thiol-catalyzed reductive nitrosylation occurs when heme is solubilized in lipophilic environments such as red blood cell membranes or bound to serum albumin. The resulting NO-ferroheme resists oxidative inactivation, is soluble in cell membranes and is transported intravascularly by albumin to promote potent vasodilation. We therefore provide an alternative route for NO delivery from erythrocytes and blood via transfer of NO-ferroheme and activation of apo-soluble guanylyl cyclase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basis spectra and reaction kinetics of GSH-assisted NO-ferroheme formation in anaerobic MeOH:PBS buffer.
Fig. 2: GSH accelerates the reaction of NO and ferric heme in suspended RBC membrane white ghosts under anaerobic conditions.
Fig. 3: NO-ferroheme formation via GSH-catalyzed reductive nitrosylation of ferric heme in serum albumin.
Fig. 4: Effects of NO-ferroheme albumin on platelet activation.
Fig. 5: Changes in murine MAP by NO-ferroheme in albumin from glutathione-catalyzed reductive nitrosylation.
Fig. 6: Changes in murine MAP by NO-ferroheme prepared via ferrous heme generation by sodium dithionite and NO addition in albumin.

Similar content being viewed by others

Data availability

All the data generated in this study are available within the main text and the Supplementary Information file. Data are also available from the corresponding author upon request. The source datasets generated and analyzed during the current study are available on Dryad at https://doi.org/10.5061/dryad.mw6m9062d. Source data are provided with this paper.

References

  1. Chambers, I. G., Willoughby, M. M., Hamza, I. & Reddi, A. R. One ring to bring them all and in the darkness bind them: the trafficking of heme without deliverers. Biochim. Biophys. Acta 1868, 118881 (2021).

    Article  CAS  Google Scholar 

  2. Sun, F. et al. HRG-9 homologues regulate haem trafficking from haem-enriched compartments. Nature 610, 768–774 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanna, D. A. et al. Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proc. Natl Acad. Sci. USA 113, 7539–7544 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dai, Y., Sweeny, E. A., Schlanger, S., Ghosh, A. & Stuehr, D. J. GAPDH delivers heme to soluble guanylyl cyclase. J. Biol. Chem. 295, 8145–8154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kharitonov, V. G., Sharma, V. S., Magde, D. & Koesling, D. Kinetics of nitric oxide dissociation from five- and six-coordinate nitrosyl hemes and heme proteins, including soluble guanylate cyclase. Biochemistry 36, 6814–6818 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Ford, P. C. & Miranda, K. M. The solution chemistry of nitric oxide and other reactive nitrogen species. Nitric Oxide 103, 31–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Cosby, K. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 9, 1498–1505 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Huang, Z. et al. Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J. Clin. Invest. 115, 2099–2107 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cortese-Krott, M. M. & Kelm, M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol. 2, 251–258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leo, F. et al. Red blood cell and endothelial eNOS independently regulate circulating nitric oxide metabolites and blood pressure. Circulation 144, 870–889 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eich, R. F. et al. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 35, 6976–6983 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Straub, A. C. et al. Endothelial cell expression of haemoglobin α regulates nitric oxide signalling. Nature 491, 473–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dejam, A. et al. Nitrite infusion in humans and nonhuman primates. Circulation 116, 1821–1831 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, K., Piknova, B., Pittman, R. N., Schechter, A. N. & Popel, A. S. Nitric oxide from nitrite reduction by hemoglobin in the plasma and erythrocytes. Nitric Oxide 18, 47–60 (2008).

    Article  PubMed  Google Scholar 

  15. Lancaster, J. R. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc. Natl Acad. Sci. USA 91, 8137–8141 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, X. et al. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem. 273, 18709–18713 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez, J., Maloney, R. E., Rassaf, T., Bryan, N. S. & Feelisch, M. Chemical nature of nitric oxide storage forms in rat vascular tissue. Proc. Natl Acad. Sci. USA 100, 336–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Bryan, N. S. et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc. Natl Acad. Sci. USA 101, 4308–4313 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nikitovic, D. & Holmgren, A. S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J. Biol. Chem. 271, 19180–19185 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Basu, S. et al. Catalytic generation of N2O3 by the concerted nitrite reductase and anhydrase activity of hemoglobin. Nat. Chem. Biol. 3, 785–794 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Y., Buerk, D. G., Barbee, K. A. & Jaron, D. A mathematical model for the role of N2O3 in enhancing nitric oxide bioavailability following nitrite infusion. Nitric Oxide 60, 1–9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hopmann, K. H., Cardey, B., Gladwin, M. T., Kim-Shapiro, D. B. & Ghosh, A. Hemoglobin as a nitrite anhydrase: modeling methemoglobin-mediated N2O3 formation. Chem. Eur. J. 17, 6348–6358 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Ford, P. C. Reactions of NO and nitrite with heme models and proteins. Inorg. Chem. 49, 6226–6239 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Fernandez, B. O. & Ford, P. C. Nitrite catalyzes ferriheme protein reductive nitrosylation. J. Am. Chem. Soc. 125, 10510–10511 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Kleschyov, A. L. The NO-heme signaling hypothesis. Free Radic. Biol. Med. 112, 544–552 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Cannon, R. O. et al. Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J. Clin. Invest. 108, 279–287 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sweeny, E. A. et al. Nitric oxide and heme-NO stimulate superoxide production by NADPH oxidase 5. Free Radic. Biol. Med. 172, 252–263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ignarro, L. J., Adams, J. B., Horwitz, P. M. & Wood, K. S. Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms. J. Biol. Chem. 261, 4997–5002 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Shimizu, T., Lengalova, A., Martínek, V. & Martínková, M. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem. Soc. Rev. 48, 5624–5657 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Wegiel, B., Hauser, C. J. & Otterbein, L. E. Heme as a danger molecule in pathogen recognition. Free Radic. Biol. Med. 89, 651–661 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Canesin, G., Hejazi, S. M., Swanson, K. D. & Wegiel, B. Heme-derived metabolic signals dictate immune responses. Front. Immunol. 11, 66 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cao, C. & Fleming, M. D. The ins and outs of erythroid heme transport. Haematologica 100, 703 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gladwin, M. T. et al. Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc. Natl Acad. Sci. USA 97, 9943–9948 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Erzurum, S. C. et al. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc. Natl Acad. Sci. USA 104, 17593–17598 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Keeffe, R. et al. Glutathione and the intracellular labile heme pool. Biometals 34, 221–228 (2021).

    Article  PubMed  Google Scholar 

  36. Cooper, C. E. Nitric oxide and iron proteins. Biochim. Biophys. Acta 1411, 290–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Hoshino, M., Maeda, M., Konishi, R., Seki, H. & Ford, P. C. Studies on the reaction mechanism for reductive nitrosylation of ferrihemoproteins in buffer solutions. J. Am. Chem. Soc. 118, 5702–5707 (1996).

    Article  CAS  Google Scholar 

  38. Heinecke, J. L. et al. Nitrite reduction mediated by heme models. Routes to NO and HNO? J. Am. Chem. Soc. 135, 4007–4017 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. MacArthur, P. H., Shiva, S. & Gladwin, M. T. Measurement of circulating nitrite and S-nitrosothiols by reductive chemiluminescence. J. Chromatogr. B 851, 93–105 (2007).

    Article  CAS  Google Scholar 

  40. Basu, S., Wang, X., Galdwin, M. T. & Kim-Shapiro, D. B. Chemiluminescent detection of S‐nitrosated proteins: comparison of tri‐iodide, copper/CO/cysteine, and modified copper/cysteine methods. Methods Enzymol. 440, 137–156 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Singh, S. P., Wishnok, J. S., Keshive, M., Deen, W. M. & Tannenbaum, S. R. The chemistry of the S-nitrosoglutathione/glutathione system. Proc. Natl Acad. Sci. USA 93, 14428–14433 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pou, S., Keaton, L., Surichamorn, W., Frigillana, P. & Rosen, G. M. Can nitric oxide be spin trapped by nitrone and nitroso compounds? Biochim. Biophys. Acta 1201, 118–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Chiabrando, D., Vinchi, F., Fiorito, V., Mercurio, S. & Tolosano, E. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front Pharm. 5, 61 (2014).

    Article  Google Scholar 

  44. Salgado, M. T., Cao, Z., Nagababu, E., Mohanty, J. G. & Rifkind, J. M. Red blood cell membrane-facilitated release of nitrite-derived nitric oxide bioactivity. Biochemistry 54, 6712–6723 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Praneeth, V. K. K., Haupt, E. & Lehnert, N. Thiolate coordination to Fe(II)–porphyrin NO centers. J. Inorg. Biochem. 99, 940–948 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Goodrich, L. E., Paulat, F., Praneeth, V. K. K. & Lehnert, N. Electronic structure of heme-nitrosyls and its significance for nitric oxide reactivity, sensing, transport, and toxicity in biological systems. Inorg. Chem. 49, 6293–6316 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Witting, P. K., Douglas, D. J. & Mauk, A. G. Reaction of human myoglobin and H2O2: involvement of a thiyl radical produced at cysTEINE 110. J. Biol. Chem. 275, 20391–20398 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Wardell, M. et al. The atomic structure of human methemalbumin at 1.9 Å. Biochem. Biophys. Res. Commun. 291, 813–819 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Ascenzi, P., di Masi, A., Fanali, G. & Fasano, M. Heme-based catalytic properties of human serum albumin. Cell Death Discov. 1, 15025 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hanson, M. S. et al. Methaemalbumin formation in sickle cell disease: effect on oxidative protein modification and HO-1 induction. Br. J. Haematol. 154, 502–511 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carter, D. C. & Ho, J. X. in Advances in Protein Chemistry (eds. Anfinsen, C. B., Edsall, J. T., Richards, F. M. & Eisenberg, D. S.) vol. 45 153–203 (Academic, 1994).

  52. Wang, B. et al. Nitrosyl myoglobins and their nitrite precursors: crystal structural and quantum mechanics and molecular mechanics theoretical investigations of preferred Fe–NO ligand orientations in myoglobin distal pockets. Biochemistry 57, 4788–4802 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Doyle, M. P. & Hoekstra, J. W. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J. Inorg. Biochem. 14, 351–358 (1981).

    Article  CAS  PubMed  Google Scholar 

  54. Andersen, H. J. & Skibsted, L. H. Kinetics and mechanism of thermal oxidation and photooxidation of nitrosylmyoglobin in aqueous solution. J. Agric. Food Chem. 40, 1741–1750 (1992).

    Article  CAS  Google Scholar 

  55. Naseem, K. M. & Roberts, W. Nitric oxide at a glance. Platelets 22, 148–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Stasch, J.-P. et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J. Clin. Invest. 116, 2552–2561 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Becker-Pelster, E. M. et al. Inhaled mosliciguat (BAY 1237592): targeting pulmonary vasculature via activating apo-sGC. Respir. Res. 23, 272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wajih, N. et al. Erythrocytic bioactivation of nitrite and its potentiation by far-red light. Redox Biol. 20, 442–450 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Wajih, N. et al. The role of red blood cell S-nitrosation in nitrite bioactivation and its modulation by leucine and glucose. Redox Biol. 8, 415–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shah, C. M., Bell, S. E., Locke, I. C., Chowdrey, H. S. & Gordge, M. P. Interactions between cell surface protein disulphide isomerase and S-nitrosoglutathione during nitric oxide delivery. Nitric Oxide 16, 135–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Mullershausen, F. et al. Rapid nitric oxide–induced desensitization of the cGMP response is caused by increased activity of phosphodiesterase type 5 paralleled by phosphorylation of the enzyme. J. Cell Biol. 155, 271–278 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mingone, C. J., Gupte, S. A., Iesaki, T. & Wolin, M. S. Hypoxia enhances a cGMP-independent nitric oxide relaxing mechanism in pulmonary arteries. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L296–L304 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Nagababu, E. Ferriheme catalyzes nitric oxide reaction with glutathione to form S-nitrosoglutathione: a novel mechanism for formation of S-nitrosothiols. Free Radic. Biol. Med. 101, 296–304 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Reichenbach, G., Sabatini, S., Palombari, R. & Palmerini, C. A. Reaction mechanism between nitric oxide and glutathione mediated by Fe(III) myoglobin. Nitric Oxide 5, 395–401 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. DeMartino, A. W., Kim-Shapiro, D. B., Patel, R. P. & Gladwin, M. T. Nitrite and nitrate chemical biology and signalling. Br. J. Pharmacol. 176, 228–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Dent, M. R., DeMartino, A. W., Tejero, J. & Gladwin, M. T. Endogenous hemoprotein-dependent signaling pathways of nitric oxide and nitrite. Inorg. Chem. 60, 15918–15940 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Parent, M. et al. In situ microparticles loaded with S-nitrosoglutathione protect from stroke. PLoS One 10, e0144659 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. van ‘t Erve, T. J., Wagner, B. A., Ryckman, K. K., Raife, T. J. & Buettner, G. R. The concentration of glutathione in human erythrocytes is a Heritable Trait. Free Radic. Biol. Med. https://doi.org/10.1016/j.freeradbiomed.2013.08.002 (2013).

  69. Donegan, R. K., Moore, C. M., Hanna, D. A. & Reddi, A. R. Handling heme: the mechanisms underlying the movement of heme within and between cells. Free Radic. Biol. Med. 133, 88–100 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Krishnamurthy, P. & Schuetz, J. D. The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival. Biometals 18, 349–358 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Ascenzi, P., di Masi, A., De Sanctis, G., Coletta, M. & Fasano, M. Ibuprofen modulates allosterically NO dissociation from ferrous nitrosylated human serum heme-albumin by binding to three sites. Biochem. Biophys. Res. Commun. 387, 83–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Ascenzi, P., Imperi, F., Coletta, M. & Fasano, M. Abacavir and warfarin modulate allosterically kinetics of NO dissociation from ferrous nitrosylated human serum heme-albumin. Biochem. Biophys. Res. Commun. 369, 686–691 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Jennifer, B. et al. Transferrin receptor 1 is a cellular receptor for human heme-albumin. Commun. Biol. 3, 1–13 (2020).

    Article  Google Scholar 

  74. Shvartsman, M., Bilican, S. & Lancrin, C. Iron deficiency disrupts embryonic haematopoiesis but not the endothelial to haematopoietic transition. Sci. Rep. 9, 6414 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wu, S. M. et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127, 1137–1150 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Vogel, S. M., Minshall, R. D., Pilipović, M., Tiruppathi, C. & Malik, A. B. Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L1512–L1522 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Hart, T. W. Some observations concerning the S-nitroso and S-phenylsulphonyl derivatives of l-cysteine and glutathione. Tetrahedron Lett. 26, 2013–2016 (1985).

    Article  CAS  Google Scholar 

  78. Zijlstra, W. G., Buursma, A & van Assendelft, O.W. Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin Determination and Application (CRC, 2021).

  79. Maragos, C. M. et al. Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J. Med. Chem. 34, 3242–3247 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Hughan, K. S. et al. Conjugated linoleic acid modulates clinical responses to oral nitrite and nitrate. Hypertension 70, 634–644 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Wajih, N. et al. Potential therapeutic action of nitrite in sickle cell disease. Redox Biol. 12, 1026–1039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Guthold and H. Lee for help with DIC microscopy. This work was supported by NIH grants R01 HL125886 (J.T. and M.T.G.), R01 HL098032 (M.T.G. and D.B.K.-S.), K08 HL136857 (J.J.R.) and DOD grant W81XWH2210198 (J.T. and J.J.R.).

Author information

Authors and Affiliations

Authors

Contributions

A.W.D. designed and performed experiments, analyzed data and wrote the initial and final drafts of the paper. L.P. performed and helped design experiments, including the initial ones discovering the thiol-based catalysis, and analyzed data. M.R.D., X.C., Q.X., B.S.G., J.T., S.B., E.A., J.J.R. and Y.J. also performed experiments and/or analyzed data. All authors reviewed and edited the manuscript. M.T.G. and D.B.K.-S. directed the research and designed experiments, interpreted data and share senior authorship.

Corresponding authors

Correspondence to Mark T. Gladwin or Daniel B. Kim-Shapiro.

Ethics declarations

Competing interests

A.W.D., J.J.R., M.T.G., J.T., M.R.D., D.B.K.-S. and L.P. have a provisional patent filed at the University of Pittsburgh (application no. 63/420,030), related to the creation and use of NO-ferroheme. Though not related directly to NO-ferroheme, A.W.D., J.T., J.J.R., M.T.G., M.R.D. and Q.X. are co-inventors on patents and patent applications directed at the use of heme proteins as therapeutic agents. M.T.G., D.B.K.-S. and J.J.R. are co-inventors on patent and/or patent applications related to sodium nitrite as a therapeutic. Some of these patents are licensed to Globin Solutions, Inc. J.J.R., M.T.G. and J.T. are shareholders of Globin Solutions. J.J.R. and J.T. are officers and directors of Globin Solutions. A.W.D. is a consultant of Globin Solutions. M.T.G. is a consultant, director and scientific advisor to Globin Solutions. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Arnab Ghosh, Emil Martin and Douglas Thomas for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Scheme depicting electron transfer to generate NO-ferroheme.

Ferric labile heme reacts with NO to generate a labile nitrosyl ferric heme, which readily is reduced by 1 electron by a small thiol like glutathione (GSH). The mechanism of transfer may follow an inner sphere mechanism (I.S.) where the GSH binds the nitrosyl ferric heme first then transfers the electron, or an outer sphere mechanism (O.S) where binding does not occur. In the presence of excess NO, the generated thiyl radical from either mechanism will react with NO to yield S-nitrosoglutathione (GSNO).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–7.

Reporting Summary

Supplementary Data 1

Data for Supplementary Fig. 1. Example NO traces from NO chemiluminescence analyzer, source data.

Supplementary Data 2

Data for Supplementary Fig. 2. Formation of NO-ferroheme via GSH-catalyzed reductive nitrosylation of ferric heme in albumin at different NO concentrations, source data.

Supplementary Data 3

Data for Supplementary Fig. 3. Other transfers of NO-ferroheme, source data.

Supplementary Data 4

Data for Supplementary Fig. 4. NO-ferroheme albumin stability in the presence of an equivalent of oxyhemoglobin, source data.

Supplementary Data 5

Data for Supplementary Fig. 5. Other relevant platelet control experiments, source data.

Supplementary Data 6

Data for Supplementary Fig. 6. Elimination of nitrite as potential vasodilating species during administration of NO-ferroheme albumin solution, source data.

Supplementary Data 7

Data for Supplementary Fig. 7. Typified flow cytometry gating for platelet sorting and platelet activation determination.

Source data

Source Data Fig. 1

Data for Fig. 1.

Source Data Fig. 2

Data for Fig. 2.

Source Data Fig. 3

Data for Fig. 3.

Source Data Fig. 4

Data for Fig. 4.

Source Data Fig. 5

Data for Fig. 5.

Source Data Fig. 6

Data for Fig. 6.

Source Data Extended Data Fig. 1

Chemdraw file for Extended Data Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeMartino, A.W., Poudel, L., Dent, M.R. et al. Thiol-catalyzed formation of NO-ferroheme regulates intravascular NO signaling. Nat Chem Biol 19, 1256–1266 (2023). https://doi.org/10.1038/s41589-023-01413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01413-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing