Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A method for structure determination of GPCRs in various states

Abstract

G-protein-coupled receptors (GPCRs) are a class of integral membrane proteins that detect environmental cues and trigger cellular responses. Deciphering the functional states of GPCRs induced by various ligands has been one of the primary goals in the field. Here we developed an effective universal method for GPCR cryo-electron microscopy structure determination without the need to prepare GPCR-signaling protein complexes. Using this method, we successfully solved the structures of the β2-adrenergic receptor (β2AR) bound to antagonistic and agonistic ligands and the adhesion GPCR ADGRL3 in the apo state. For β2AR, an intermediate state stabilized by the partial agonist was captured. For ADGRL3, the structure revealed that inactive ADGRL3 adopts a compact fold and that large unusual conformational changes on both the extracellular and intracellular sides are required for activation of adhesion GPCRs. We anticipate that this method will open a new avenue for understanding GPCR structure‒function relationships and drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design strategy of the universal method.
Fig. 2: Characterization of the 1B3 Fab and design of the glue molecule.
Fig. 3: Ligand binding activity and antagonist-bound structure of β2AR.
Fig. 4: Agonist-bound structures of β2AR.
Fig. 5: Conformational changes in ADGRL3 activation.

Similar content being viewed by others

Data availability

The three-dimensional cryo-EM density maps of alprenolol–β2AR–mBRIL, formoterol–β2AR–mBRIL, olodaterol–β2AR–mBRIL and ADGRL3–mBRIL structures have been deposited in the Electron Microscopy Data Bank under accession numbers EMD-36361, EMD-36342, EMD-36360 and EMD-36426, respectively. Atomic coordinates for the atomic models of BRIL–1B3, alprenolol–β2AR–mBRIL, formoterol–β2AR–mBRIL, olodaterol–β2AR–mBRIL and ADGRL3–mBRIL structures have been deposited in the PDB under accession numbers 8J7E, 8JJO, 8JJ8, 8JJL and 8JMT, respectively. All relevant data in this paper are included in the paper or the Supplementary Information. Source data are provided with this paper.

References

  1. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Rosenbaum, D. M., Rasmussen, S. G. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Syrovatkina, V., Alegre, K. O., Dey, R. & Huang, X. Y. Regulation, signaling, and physiological functions of G-proteins. J. Mol. Biol. 428, 3850–3868 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hilger, D., Masureel, M. & Kobilka, B. K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 4–12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garcia-Nafria, J. & Tate, C. G. Structure determination of GPCRs: cryo-EM compared with X-ray crystallography. Biochem. Soc. Trans. 49, 2345–2355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robertson, M. J., Meyerowitz, J. G. & Skiniotis, G. Drug discovery in the era of cryo-electron microscopy. Trends Biochem. Sci. 47, 124–135 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, Y. Single-particle cryo-EM at crystallographic resolution. Cell 161, 450–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Staus, D. P. et al. Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc. Nature 579, 297–302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwon, N. Y., Kim, Y. & Lee, J. O. The application of helix fusion methods in structural biology. Curr. Opin. Struct. Biol. 60, 110–116 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Youn, S. J. et al. Construction of novel repeat proteins with rigid and predictable structures using a shared helix method. Sci. Rep. 7, 2595 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mukherjee, S. et al. Synthetic antibodies against BRIL as universal fiducial marks for single-particle cryoEM structure determination of membrane proteins. Nat. Commun. 11, 1598 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsutsumi, N. et al. Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. eLife 9, e58464 (2020).

  18. Zhang, K., Wu, H., Hoppe, N., Manglik, A. & Cheng, Y. Fusion protein strategies for cryo-EM study of G protein-coupled receptors. Nat. Commun. 13, 4366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gotzke, H. et al. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat. Commun. 10, 4403 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ereno-Orbea, J. et al. Structural basis of enhanced crystallizability induced by a molecular chaperone for antibody antigen-binding fragments. J. Mol. Biol. 430, 322–336 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Miyagi, H. et al. The discovery of a new antibody for BRIL-fused GPCR structure determination. Sci. Rep. 10, 11669 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ge, Q., Teng, M., Li, X., Guo, Q. & Tao, Y. An epitope-directed selection strategy facilitating the identification of Frizzled receptor selective antibodies. Structure 31, 33–43 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Litowski, J. R. & Hodges, R. S. Designing heterodimeric two-stranded α-helical coiled-coils. Effects of hydrophobicity and α-helical propensity on protein folding, stability, and specificity. J. Biol. Chem. 277, 37272–37279 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Lindhout, D. A., Litowski, J. R., Mercier, P., Hodges, R. S. & Sykes, B. D. NMR solution structure of a highly stable de novo heterodimeric coiled-coil. Biopolymers 75, 367–375 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. von Heijne, G. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341, 456–458 (1989).

    Article  Google Scholar 

  26. Wacker, D. et al. Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J. Am. Chem. Soc. 132, 11443–11445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robertson, M. J. et al. Structure determination of inactive-state GPCRs with a universal nanobody. Nat. Struct. Mol. Biol. 29, 1188–1195 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y. et al. Single-particle cryo-EM structural studies of the β2AR–Gs complex bound with a full agonist formoterol. Cell Discov. 6, 45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Staus, D. P. et al. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535, 448–452 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bouyssou, T. et al. Pharmacological characterization of olodaterol, a novel inhaled β2-adrenoceptor agonist exerting a 24-hour-long duration of action in preclinical models. J. Pharmacol. Exp. Ther. 334, 53–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Langenhan, T., Piao, X. & Monk, K. R. Adhesion G protein-coupled receptors in nervous system development and disease. Nat. Rev. Neurosci. 17, 550–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Bassilana, F., Nash, M. & Ludwig, M. G. Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat. Rev. Drug Discov. 18, 869–884 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Purcell, R. H. & Hall, R. A. Adhesion G protein-coupled receptors as drug targets. Annu. Rev. Pharmacol. Toxicol. 58, 429–449 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Rosa, M., Noel, T., Harris, M. & Ladds, G. Emerging roles of adhesion G protein-coupled receptors. Biochem. Soc. Trans. 49, 1695–1709 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bjarnadottir, T. K., Fredriksson, R. & Schioth, H. B. The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell. Mol. Life Sci. 64, 2104–2119 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Demberg, L. M. et al. Activation of adhesion G protein-coupled receptors: agonist specificity of Stachel sequence-derived peptides. J. Biol. Chem. 292, 4383–4394 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arac, D. et al. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J. 31, 1364–1378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ping, Y. Q. et al. Structures of the glucocorticoid-bound adhesion receptor GPR97–Go complex. Nature 589, 620–626 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Qu, X. et al. Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1. Nature 604, 779–785 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ping, Y. Q. et al. Structural basis for the tethered peptide activation of adhesion GPCRs. Nature 604, 763–770 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Barros-Alvarez, X. et al. The tethered peptide activation mechanism of adhesion GPCRs. Nature 604, 757–762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiao, P. et al. Tethered peptide activation mechanism of the adhesion GPCRs ADGRG2 and ADGRG4. Nature 604, 771–778 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Qian, Y. et al. Structural insights into adhesion GPCR ADGRL3 activation and Gq, Gs, Gi, and G12 coupling. Mol. Cell 82, 4340–4352 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Regan, S. L., Williams, M. T. & Vorhees, C. V. Latrophilin-3 disruption: effects on brain and behavior. Neurosci. Biobehav Rev. 127, 619–629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mathiasen, S. et al. G12/13 is activated by acute tethered agonist exposure in the adhesion GPCR ADGRL3. Nat. Chem. Biol. 16, 1343–1350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martinez, A. F. et al. An ultraconserved brain-specific enhancer within ADGRL3 (LPHN3) underpins attention-deficit/hyperactivity disorder susceptibility. Biol. Psychiatry 80, 943–954 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, J. et al. Calcineurin-fusion facilitates cryo-EM structure determination of a family A GPCR. Preprint at bioRxiv https://doi.org/10.1101/2022.03.27.485993 (2022).

  49. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D 62, 859–866 (2006).

    Article  PubMed  Google Scholar 

  50. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of COOT. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, X. et al. Amorphous nickel titanium alloy film: a new choice for cryo electron microscopy sample preparation. Prog. Biophys. Mol. Biol. 156, 3–13 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Fernandez-Leiro, R. & Scheres, S. H. W. A pipeline approach to single-particle processing in RELION. Acta Crystallogr. D Struct. Biol. 73, 496–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Cryo-EM data were collected at the Center of Cryo-Electron Microscopy, University of Science and Technology of China. We thank staff members at the Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale and University of Science and Technology of China for cryo-EM sample examination. We also thank staff members at the Shanghai Synchrotron Radiation Facility for assistance in data collection. This work was supported by the National Key Research and Development Program of China grants 2022YFF1203100 and 2018YFA0902700 and Center for Advanced Interdisciplinary Science and Biomedicine of IHM grant QYZD20220006 (to Y.T.).

Author information

Authors and Affiliations

Authors

Contributions

Q. Guo and Y.Z. performed antibody selection, characterization and structure determination. Q. Guo, B.H., Y.Z., Y.R. and Y.G. performed the biochemical studies, prepared the cryo-EM samples and collected the cryo-EM data. Q. Guo, Y.Z. and H.J. processed the cryo-EM data. Q.W. and Q. Ge helped with data processing. Y.D. and H.H. supervised cryo-EM data processing. X.L. supervised radioligand binding assays. Y.T. conceived and supervised the project and wrote the paper.

Corresponding authors

Correspondence to Hongli Hu or Yuyong Tao.

Ethics declarations

Competing interests

Y.T., Q. Guo, B.H. and Y.Z. have filed an invention patent for the method described in this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Shoji Maeda, H. Eric Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 GPCR fusion with BRIL.

a, Examples of the crystal structures of GPCRs with fusion partners. Every fusion protein is connected to GPCRs with at least one coil (indicated with a red arrow) except BRIL. b, Representative 2D classifications indicate the heterogeneous conformations in the β2AR-BRIL Fab complex. c, The stability test revealed that β2AR-mBRIL has higher stability than β2AR-BRIL. The experiment was repeated twice independently with similar results. d, Steric clashes between the 5-HT2B receptor (blue, PDB ID: 4ib4) and apo BRIL (gray, PDB ID: 5ym7) loop. e, Examples of the crystal structures of GPCR-BRIL fusion proteins. The linker between BRIL helix II and helix III is not visible in these structures.

Source data

Extended Data Fig. 2 GPCR fusion with mBRIL and ALFA.

a, The replaced loop of BRIL avoids the conflict between BRIL and GPCR. Modeled with 5-HT2B-BRIL (blue, PDB ID: 4ib4). b, Structure alignment of BRIL Fabs and BRIL-GPCR (PDB ID: 4ib4). Both BAG2 and SRP2070Fab are positioned in an inappropriate orientation. c, Equivalent expression levels of β2AR-H8-ALFA fusion proteins. ALFA was fused with different spacers after H8 (left). An eGFP was fused at the C-terminus of the fusion protein for fluorescence-detection size-exclusion chromatography (left). Example of the pull-down result of β2AR-mBRIL-3aa-ALFA with NbALFA (right). The experiment was repeated twice independently with similar results.

Source data

Extended Data Fig. 3 Selection and characterization of the anti-BRIL Fabs.

a, Modeling of a desired BRIL Fab (cyan/green) onto GPCR-BRIL. The BRIL (magenta)-fused 5-HT2B receptor (blue) was used (PDB ID: 4ib4). A scaffold Fab was placed in a favorite position. b, The desired epitope on BRIL. Key residues from the epitope (highlighted as yellow sticks) were mutated into alanines for the ‘counter’ antigen. c, Single colony phage ELISA of the 12 different colonies showed high binding signals to WT BRIL but weak binding signals to mutant BRIL. Data shown are means ± s.e.m. from N = 3 independent experiments performed in technical duplicate. d, The binding affinity of the candidate Fabs for BRIL. The affinity of the 12 antibodies was determined using protein-based ELISA. Seven of them showed high affinity for WT BRIL (left), and all seven Fabs showed low affinity for the mutant BRIL (right). Data shown are means ± s.e.m. from N = 3 independent experiments performed in technical duplicate. e, The binding affinity of the seven Fabs for mBRIL. The affinity was determined by protein-based ELISA and was comparable to that measured with WT BRIL. Data shown are means ± s.e.m. from N = 3 independent experiments performed in technical duplicate. f, Details of the interaction between BRIL and the 1B3 Fab. BRIL is shown in magenta, and the heavy and light chains of Fab are colored green and cyan, respectively. The 1B3 light chain (above) and heavy chain (down) mediated contacts with BRIL. g, The docked model of 1B3 Fab (green for light chain, cyan for heavy chain) and the associated NbFab (orange) on GPCR-BRIL. The structure of the BRIL (magenta)-fused 5-HT2B receptor (blue) was used (PDB ID: 4ib4).

Source data

Extended Data Fig. 4 Design and characterization of the bivalent glue molecule.

a, The predicted binding position of NbALFA (pink). ALFA was fused with different spacers (indicated by the underlined residues). NbALFA was aligned onto the no spacer (left), a one-residue spacer (middle), and a two-residue spacer ALFA models. Three residues normally perform a helical turn. b, The binding ability of the bivalent glue molecule to β2AR-mBRIL and 1B3 Fab. The glue molecule forms a 1:1 complex with β2AR-mBRIL (left) and 1B3 (right) in pull-down assays. The experiment was repeated at least four times independently with similar results.

Source data

Extended Data Fig. 5 Cryo-EM processing and 3D reconstruction workflow for the alprenolol-β2AR-mBRIL complex.

a, Cryo-EM data processing workflow. b, Gold-standard FSC curves of the 3D reconstructions. c, Local resolution map of the complex. d, Cryo-EM density maps and models of the seven transmembrane helices (TM1-7) of the complex. Maps are shown in cyan.

Extended Data Fig. 6 Cryo-EM processing and 3D reconstruction workflow for the formoterol-β2AR-mBRIL complex.

a, Cryo-EM data processing workflow. b, Gold-standard FSC curves of the 3D reconstructions. c, Local resolution map of the complex. d, Cryo-EM density maps and models of the seven transmembrane helices (TM1-7) of the complex. Maps are shown in green.

Extended Data Fig. 7 Cryo-EM processing and 3D reconstruction workflow for the olodaterol-β2AR-mBRIL complex.

a, Cryo-EM data processing workflow. b, Gold-standard FSC curves of the 3D reconstructions. c, Local resolution map of the complex. d, Cryo-EM density maps and models of the seven transmembrane helices (TM1-7) of the complex. Maps are shown in pink.

Extended Data Fig. 8 Optimization of the fusion site and glue molecule for ADGRL3.

a, The predicted model of ADGRL3-mBRIL. NbALFA and 1B3/NbFab were docked through structural alignment. E3/K3 was manually docked. ALFA was fused with a two-residue spacer after H8 (LRTH). b, The detailed design of the glue molecule combination. c, Representative 2D classifications indicate the ‘4 + 5’ combination resulting in more desired particles. A particle with three parts outside the micelle satisfies the design scheme.

Extended Data Fig. 9 Cryo-EM processing and 3D reconstruction workflow for the ADGRL3-mBRIL complex.

a, Cryo-EM data processing workflow. b, Gold-standard FSC curves of the 3D reconstructions. c, Local resolution map of the complex. d, Cryo-EM density maps and models of the seven transmembrane helices (TM1-7) of the complex. Maps are shown in blue.

Extended Data Fig. 10 Structural comparison of inactive ADGRL3 with class B1 members.

Structural comparison of inactive ADGRL3 with inactive glucagon receptor (PDB ID: 5EE7) (a), glucagon-like peptide-1 receptor (PDB ID: 5VEW) (b) and corticotropin-releasing factor receptor 1 (PDB ID: 4Z9G) (c).

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1 and 2.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data for Fig. 1c.

Source Data Fig. 2

Unprocessed gel image of Fig. 2a.

Source Data Fig. 3

Statistical source data for Fig. 3a.

Source Data Extended Data Fig. 1

Unprocessed gel image of Extended Data Fig. 1c.

Source Data Extended Data Fig. 2

Unprocessed gel image of Extended Data Fig. 2c.

Source Data Extended Data Fig. 3

Statistical source data for Extended Data Fig. 3c–e.

Source Data Extended Data Fig. 4

Unprocessed gel image of Extended Data Fig. 4b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., He, B., Zhong, Y. et al. A method for structure determination of GPCRs in various states. Nat Chem Biol 20, 74–82 (2024). https://doi.org/10.1038/s41589-023-01389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01389-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing