Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic basis for dA•dGTP and dA•d8OGTP misincorporation via Hoogsteen base pairs

Abstract

Replicative errors contribute to the genetic diversity needed for evolution but in high frequency can lead to genomic instability. Here, we show that DNA dynamics determine the frequency of misincorporating the A•G mismatch, and altered dynamics explain the high frequency of 8-oxoguanine (8OG) A•8OG misincorporation. NMR measurements revealed that Aanti•Ganti (population (pop.) of >91%) transiently forms sparsely populated and short-lived Aanti+•Gsyn (pop. of ~2% and kex = kforward + kreverse of ~137 s−1) and Asyn•Ganti (pop. of ~6% and kex of ~2,200 s−1) Hoogsteen conformations. 8OG redistributed the ensemble, rendering Aanti•8OGsyn the dominant state. A kinetic model in which Aanti+•Gsyn is misincorporated quantitatively predicted the dA•dGTP misincorporation kinetics by human polymerase β, the pH dependence of misincorporation and the impact of the 8OG lesion. Thus, 8OG increases replicative errors relative to G because oxidation of guanine redistributes the ensemble in favor of the mutagenic Aanti•8OGsyn Hoogsteen state, which exists transiently and in low abundance in the A•G mismatch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The conformational states of A•G and A•8OG found in the PDB with Aanti•Ganti as the GS.
Fig. 2: NMR R and CEST measurements reveal sparsely populated and short-lived Asyn•Ganti and Aanti+•Gsyn Hoogsteen bps in hpGAC.
Fig. 3: Chemical shift fingerprinting of Asyn•Ganti and Aanti+•Gsyn.
Fig. 4: A•8OG redistributes the ensemble, rendering Aanti•8OGsyn the GS.
Fig. 5: Kinetic modeling reveals Aanti+•Gsyn as a plausible pathway for dA•dGTP misincorporation by human polymerase β.
Fig. 6: The role of A•G and A•8OG dynamics in misincorporation and damage repair.

Similar content being viewed by others

Data availability

The NMR data generated in this study are included in the published article and the Supplementary Information file.

Code availability

Code for the kinetic simulations is available on GitHub at https://github.com/alhashimilab/AG-Simulation.

References

  1. Shendure, J. & Akey, J. M. The origins, determinants, and consequences of human mutations. Science 349, 1478–1483 (2015).

    CAS  PubMed  Google Scholar 

  2. Sprouffske, K., Aguilar-Rodriguez, J., Sniegowski, P. & Wagner, A. High mutation rates limit evolutionary adaptation in Escherichia coli. PLoS Genet. 14, e1007324 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    CAS  PubMed  Google Scholar 

  4. Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rattray, A. J. & Strathern, J. N. Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu. Rev. Genet. 37, 31–66 (2003).

    CAS  PubMed  Google Scholar 

  6. Barbari, S. R. & Shcherbakova, P. V. Replicative DNA polymerase defects in human cancers: consequences, mechanisms, and implications for therapy. DNA Repair 56, 16–25 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Watson, J. D. & Crick, F. H. Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967 (1953).

    CAS  PubMed  Google Scholar 

  8. Schendel, P. F. & Robins, P. E. Repair of O6-methylguanine in adapted Escherichia coli. Proc. Natl Acad. Sci. USA 75, 6017–6020 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Warren, J. J., Forsberg, L. J. & Beese, L. S. The structural basis for the mutagenicity of O6-methyl-guanine lesions. Proc. Natl Acad. Sci. USA 103, 19701–19706 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kimsey, I. J., Petzold, K., Sathyamoorthy, B., Stein, Z. W. & Al-Hashimi, H. M. Visualizing transient Watson–Crick-like mispairs in DNA and RNA duplexes. Nature 519, 315–320 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kimsey, I. J. et al. Dynamic basis for dG•dT misincorporation via tautomerization and ionization. Nature 554, 195–201 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, W., Hellinga, H. W. & Beese, L. S. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proc. Natl Acad. Sci. USA 108, 17644–17648 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bebenek, K., Pedersen, L. C. & Kunkel, T. A. Replication infidelity via a mismatch with Watson–Crick geometry. Proc. Natl Acad. Sci. USA 108, 1862–1867 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Koag, M. C., Nam, K. & Lee, S. The spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β. Nucleic Acids Res. 42, 11233–11245 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Topal, M. D. & Fresco, J. R. Complementary base pairing and the origin of substitution mutations. Nature 263, 285–289 (1976).

    CAS  PubMed  Google Scholar 

  16. Koag, M. C., Jung, H. & Lee, S. Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Nucleic Acids Res. 48, 5119–5134 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Freudenthal, B. D., Beard, W. A. & Wilson, S. H. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Nucleic Acids Res. 41, 1848–1858 (2013).

    CAS  PubMed  Google Scholar 

  18. Kirby, T. W., DeRose, E. F., Beard, W. A., Wilson, S. H. & London, R. E. A thymine isostere in the templating position disrupts assembly of the closed DNA polymerase β ternary complex. Biochemistry 44, 15230–15237 (2005).

    CAS  PubMed  Google Scholar 

  19. van Loon, B., Markkanen, E. & Hubscher, U. Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine. DNA Repair 9, 604–616 (2010).

    PubMed  Google Scholar 

  20. Brieba, L. G. et al. Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA polymerase. EMBO J. 23, 3452–3461 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kool, E. T. Active site tightness and substrate fit in DNA replication. Annu. Rev. Biochem. 71, 191–219 (2002).

    CAS  PubMed  Google Scholar 

  23. Freudenthal, B. D., Beard, W. A., Shock, D. D. & Wilson, S. H. Observing a DNA polymerase choose right from wrong. Cell 154, 157–168 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rozov, A., Demeshkina, N., Westhof, E., Yusupov, M. & Yusupova, G. New structural insights into translational miscoding. Trends Biochem. Sci. 41, 798–814 (2016).

    CAS  PubMed  Google Scholar 

  25. Shi, H. et al. NMR chemical exchange measurements reveal that N6-methyladenosine slows RNA annealing. J. Am. Chem. Soc. 141, 19988–19993 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rangadurai, A., Szymaski, E. S., Kimsey, I. J., Shi, H. & Al-Hashimi, H. M. Characterizing micro-to-millisecond chemical exchange in nucleic acids using off-resonance R relaxation dispersion. Prog. Nucl. Magn. Reson. Spectrosc. 112–113, 55–102 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Nikolova, E. N. et al. Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470, 498–502 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nikolova, E. N., Goh, G. B., Brooks, C. L. III & Al-Hashimi, H. M. Characterizing the protonation state of cytosine in transient G•C Hoogsteen base pairs in duplex DNA. J. Am. Chem. Soc. 135, 6766–6769 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Baisden, J. T., Boyer, J. A., Zhao, B., Hammond, S. M. & Zhang, Q. Visualizing a protonated RNA state that modulates microRNA-21 maturation. Nat. Chem. Biol. 17, 80–88 (2021).

    CAS  PubMed  Google Scholar 

  30. Chu, C. C., Plangger, R., Kreutz, C. & Al-Hashimi, H. M. Dynamic ensemble of HIV-1 RRE stem IIB reveals non-native conformations that disrupt the Rev-binding site. Nucleic Acids Res. 47, 7105–7117 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dethoff, E. A., Petzold, K., Chugh, J., Casiano-Negroni, A. & Al-Hashimi, H. M. Visualizing transient low-populated structures of RNA. Nature 491, 724–728 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sedgwick, B. Repairing DNA-methylation damage. Nat. Rev. Mol. Cell Biol. 5, 148–157 (2004).

    CAS  PubMed  Google Scholar 

  33. Lane, A. N., Jenkins, T. C., Brown, D. J. & Brown, T. N.m.r. determination of the solution conformation and dynamics of the A•G mismatch in the d(CGCAAATTGGCG)2 dodecamer. Biochem. J. 279, 269–281 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kouchakdjian, M. et al. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-Oxo-7H-dGsyn•dAanti alignment at lesion site. Biochemistry 30, 1403–1412 (1991).

    CAS  PubMed  Google Scholar 

  35. Rechkoblit, O. et al. Impact of conformational heterogeneity of OxoG lesions and their pairing partners on bypass fidelity by Y family polymerases. Structure 17, 725–736 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Balbo, P. B., Wang, E. C. & Tsai, M. D. Kinetic mechanism of active site assembly and chemical catalysis of DNA polymerase β. Biochemistry 50, 9865–9875 (2011).

    CAS  PubMed  Google Scholar 

  37. Ahn, J., Kraynov, V. S., Zhong, X., Werneburg, B. G. & Tsai, M. D. DNA polymerase β: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes. Biochem. J. 331, 79–87 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Manlove, A. H., Nunez, N. N. & David, S. S. in Base Excision Repair Pathway: Molecular Mechanisms and Role in Disease Development and Therapeutic Design (ed. Wilson, D. M., III) 63–115 (World Scientific, 2017).

  39. Ahn, J., Werneburg, B. G. & Tsai, M. D. DNA polymerase β: structure–fidelity relationship from pre-steady-state kinetic analyses of all possible correct and incorrect base pairs for wild type and R283A mutant. Biochemistry 36, 1100–1107 (1997).

    CAS  PubMed  Google Scholar 

  40. Brown, J. A., Duym, W. W., Fowler, J. D. & Suo, Z. Single-turnover kinetic analysis of the mutagenic potential of 8-oxo-7,8-dihydro-2′-deoxyguanosine during gap-filling synthesis catalyzed by human DNA polymerases λ and β. J. Mol. Biol. 367, 1258–1269 (2007).

    CAS  PubMed  Google Scholar 

  41. Burak, M. J., Guja, K. E., Hambardjieva, E., Derkunt, B. & Garcia-Diaz, M. A fidelity mechanism in DNA polymerase λ promotes error-free bypass of 8-oxo-dG. EMBO J. 35, 2045–2059 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kirouac, K. N. & Ling, H. Unique active site promotes error-free replication opposite an 8-oxo-guanine lesion by human DNA polymerase ι. Proc. Natl Acad. Sci. USA 108, 3210–3215 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Batra, V. K., Shock, D. D., Beard, W. A., McKenna, C. E. & Wilson, S. H. Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion. Proc. Natl Acad. Sci. USA 109, 113–118 (2012).

    CAS  PubMed  Google Scholar 

  44. Batra, V. K., Beard, W. A., Shock, D. D., Pedersen, L. C. & Wilson, S. H. Structures of DNA polymerase β with active-site mismatches suggest a transient abasic site intermediate during misincorporation. Mol. Cell 30, 315–324 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Westhof, E., Yusupov, M. & Yusupova, G. Recognition of Watson–Crick base pairs: constraints and limits due to geometric selection and tautomerism. F1000Prime Rep. 6, 19 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Li, P., Rangadurai, A., Al-Hashimi, H. M. & Hammes-Schiffer, S. Environmental effects on guanine-thymine mispair tautomerization explored with quantum mechanical/molecular mechanical free energy simulations. J. Am. Chem. Soc. 142, 11183–11191 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fromme, J. C., Banerjee, A., Huang, S. J. & Verdine, G. L. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature 427, 652–656 (2004).

    CAS  PubMed  Google Scholar 

  49. Lee, S. & Verdine, G. L. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase. Proc. Natl Acad. Sci. USA 106, 18497–18502 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Alvey, H. S., Gottardo, F. L., Nikolova, E. N. & Al-Hashimi, H. M. Widespread transient Hoogsteen base pairs in canonical duplex DNA with variable energetics. Nat. Commun. 5, 4786 (2014).

    CAS  PubMed  Google Scholar 

  51. Lu, X. J., Bussemaker, H. J. & Olson, W. K. DSSR: an integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 43, e142 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Leontis, N. B., Stombaugh, J. & Westhof, E. The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS  PubMed  Google Scholar 

  54. Hansen, A. L., Nikolova, E. N., Casiano-Negroni, A. & Al-Hashimi, H. M. Extending the range of microsecond-to-millisecond chemical exchange detected in labeled and unlabeled nucleic acids by selective carbon R NMR spectroscopy. J. Am. Chem. Soc. 131, 3818–3819 (2009).

    CAS  PubMed  Google Scholar 

  55. McConnell, H. M. Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 28, 430–431 (1958).

    CAS  Google Scholar 

  56. Koss, H., Rance, M. & Palmer, A. G. III. General expressions for R relaxation for N-site chemical exchange and the special case of linear chains. J. Magn. Reson. 274, 36–45 (2017).

    CAS  PubMed  Google Scholar 

  57. Palmer, A. G. & Koss, H. in Methods in Enzymology, Vol. 615 (ed. Wand, A. J.) 177–236 (Academic Press, 2019).

  58. Zhao, B., Hansen, A. L. & Zhang, Q. Characterizing slow chemical exchange in nucleic acids by carbon CEST and low spin-lock field R NMR spectroscopy. J. Am. Chem. Soc. 136, 20–23 (2014).

    CAS  PubMed  Google Scholar 

  59. Liu, B., Rangadurai, A., Shi, H. & Al-Hashimi, H. M. Rapid assessment of Watson–Crick to Hoogsteen exchange in unlabeled DNA duplexes using high-power SELOPE imino 1H CEST. Magn. Reson. 2, 715–731 (2021).

    CAS  Google Scholar 

  60. Schlagnitweit, J., Steiner, E., Karlsson, H. & Petzold, K. Efficient detection of structure and dynamics in unlabeled RNAs: the SELOPE approach. Chemistry 24, 6067–6070 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the H.M.A.-H. laboratory for assistance and critical comments on the manuscript. This work was supported by the US National Institute for General Medical Sciences (R01GM089846).

Author information

Authors and Affiliations

Authors

Contributions

S.G., E.S.S. and H.M.A.-H. conceived the project and experimental design. E.S.S. and S.G. prepared the samples. S.G. and E.S.S. performed NMR experiments. S.G., A.K.R., H.S., B.L. and H.M.A.-H. analyzed the NMR data. S.G., A.M. and H.M.A.-H. performed and analyzed the computational modeling. S.G. and H.M.A.-H. wrote the paper.

Corresponding author

Correspondence to Hashim M. Al-Hashimi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Lewis Kay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 NMR analysis reveals Aanti•Ganti as the ground-state in hpGAC.

(A) 2D [1H, 1H] NOESY imino walk of Aanti•Ganti at T = 1 °C. (B) 2D [1H, 1H] NOESY spectra of the H2ʹ/H2ʹʹ-H6/H8 region for Aanti•Ganti at T = 25 °C. (C) 2D [13C, 1H] HSQC spectra of the C1ʹ-H1ʹ, C2-H2, C6-H6, and C8-H8 regions for Aanti•Ganti at T = 25 °C.

Extended Data Fig. 2 Characterization of A•G dynamics in the hpGAT hairpin.

(A) Secondary structure of hpGAT and chemical shift assignments of the C1ʹ-H1ʹ, C2-H2, C6-H6, and C8-H8 regions of 2D [13C, 1H] HSQC spectra for hpGAT. (B) Three-state dynamic equilibrium of A•G in the hpGAT is like hpGAC. Asterix denotes population and exchange degeneracy in the slow exchange to Aanti+•Gsyn. (C) Off-resonance R profiles for A-C2, A-C1ʹ, and A-C8. Spin-lock powers used for R profiles are color-coded in panel (C). Solid lines in panel (C) denote the global 2-state fits to the data using B-M equations as described in Methods. Data for the R profiles in panel (C) were presented as values ± 1 s.d. from Monte Carlo simulations for one measurement as described in Methods. (D) Comparison of the RD-derived Δω between hpGAT (dark orange) and hpGAC (gold). The Δω data corresponding to the panel (D) is presented as mean values ± 1 s.d. from Monte Carlo simulations (number of iterations = 500) for one R measurement as described in Methods.

Extended Data Fig. 3 Exchange parameters for the A•G mismatch measured using R in hpGAC at 10 °C.

Shown are the off-resonance 13C R profiles measured for A-C1ʹ, A-C8, A-C2, and G-C8 collected at 10 °C and pH 7.4 in NMR buffer as described in Methods. Spin-lock powers used for R profiles are color-coded. Solid lines in the profiles denote the global 2-state fits to the data using B-M equations as described in Methods. Data for the R profiles were presented as values ± 1 s.d. from Monte Carlo simulations for one measurement as described in Methods. For the R profiles corresponding to A-C1ʹ and A-C8, the ± 1 s.d. is smaller than the data points. These exchange measurements at 10 °C only sense Asyn-Ganti exchange (top) since Aanti+-Gsyn exchange becomes too slow to have a substantial contribution (middle). Probes that sensed exchange at this condition are highlighted in green.

Extended Data Fig. 4 pH-dependence of conformational exchange involving the Aanti+•Gsyn ES.

(A) The pH-dependence of R2 + Rex profiles for A-C1ʹ, A-C8, A-C2, G-C1ʹ, and G-C8 for pH 6.9 and pH 7.4. Spin-lock powers used for R profiles are color-coded. (B) NMR-derived Δω of pH 6.9 (outlined) agrees with that of pH 7.4 (filled), indicating that the same Hoogsteen ESs are being detected at the lower pH. The Δω data in panel (B) are presented as mean values ± 1 s.d. from Monte Carlo simulations (number of iterations = 500) for one R or CEST measurement as described in Methods. (C) 13C R profile measured for A-C2 at pH 6.9. Spin-lock powers used for the R profile is color-coded. Solid lines denote the global fits to the data using B-M equations while fixing the population of the Aanti+•Gsyn ES to be the pKa-derived population. Data for the R profile in panel (C) were presented as values ± 1 s.d. (smaller than the data points) from Monte Carlo simulations for one measurement as described in Methods. (D) B-M simulations on 3-state exchange in A-C8 using exchange parameters determined at pH 7.4 and pH 6.9 indicate that the R2 + Rex for Aanti+•Gsyn are masked by exchange with Asyn•Ganti.

Extended Data Fig. 5 NMR spectra of mutant-mimics of the ESs.

Chemical shift overlays of the C1ʹ-H1ʹ, C2-H2, C6-H8, and C8-H8 regions of 2D [13C, 1H] HSQC spectra for the m1A (green), m1G (dark blue), and low pH (light blue) structural mimics relative to A•G (black).

Extended Data Fig. 6 Characterization of the A•8OG mismatch.

Left: 2D [1H, 1H] NOESY imino walk of A•8OG at 25 °C. Right: Chemical shift assignments of the C1ʹ-H1ʹ, C2-H2, C6-H6, and C8-H8 regions of 2D [13C, 1H] HSQC spectra for A•8OG.

Extended Data Fig. 7 Definition of rate constants in the kinetic mechanism used to model misincorporation.

Shown are kinetic mechanisms for (A) correct dA•dTTP Watson-Crick incorporation. (B) dA•dGTP misincorporation and (C) dA•d8OGTP misincorporation. In (B), k1, k-1(dNTP), k3, and k-3 are used in Models 1, 2, and 1 + 2. In Model 1, only Aanti+•Gsyn is accepted as the mutagenic intermediate and can proceed forward with rate constants k2 and k-2 while Asyn•Ganti can be unbound by the polymerase with rate constants k1 and k-1(ES1). Model 2 is the same as Model 1 but with Asyn•Ganti as the mutagenic form proceeding forward with rate constants k2 and k-2 and Aanti+•Gsyn unbound with rate constants k1 and k-1(ES2). In Model 1 + 2, both Aanti+•Gsyn and Asyn•Ganti can proceed forward with misincorporation with rate constants k2 and k-2. Neither ES species can unbind. (C) Kinetic mechanism of dA•d8OGTP misincorporation. All rate constants listed are used. E, Eʹʹ, Eʹ, and E* refer to DNA polymerase in the open, ajar, closed, and catalytically active conformations, respectively.

Extended Data Fig. 8 Misincorporation probability (Fpol) of dA•dGTP and dA•8OGTP from kinetic simulations.

Shown are the Fpol calculated from the simulated Kd and kpol for the reference Watson-Crick dA•dTTP bp and dA•dGTP or dA•8OGTP. Data presented for the reference experimental (Exp) values as solid bar graphs were obtained from their corresponding reference for A•G37 (left), its pH dependence39 (middle) and the impact of 8OG40 (right). Data presented for the computational kinetic modeling as the white bar graphs are presented as mean values ± 1 s.d. (not visible) from Monte Carlo simulations (number of iterations = 200) as described in Methods.

Supplementary information

Supplementary Information

Supplementary Tables 1–11.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Szymanski, E.S., Rangadurai, A.K. et al. Dynamic basis for dA•dGTP and dA•d8OGTP misincorporation via Hoogsteen base pairs. Nat Chem Biol 19, 900–910 (2023). https://doi.org/10.1038/s41589-023-01306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01306-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing