Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Detection of cell–cell interactions via photocatalytic cell tagging

Abstract

The growing appreciation of immune cell–cell interactions within disease environments has led to extensive efforts to develop immunotherapies. However, characterizing complex cell–cell interfaces in high resolution remains challenging. Thus, technologies leveraging therapeutic-based modalities to profile intercellular environments offer opportunities to study cell–cell interactions with molecular-level insight. We introduce photocatalytic cell tagging (PhoTag) for interrogating cell–cell interactions using single-domain antibodies (VHHs) conjugated to photoactivatable flavin-based cofactors. Following irradiation with visible light, the flavin photocatalyst generates phenoxy radical tags for targeted labeling. Using this technology, we demonstrate selective synaptic labeling across the PD-1/PD-L1 axis in antigen-presenting cell–T cell systems. In combination with multiomics single-cell sequencing, we monitored interactions between peripheral blood mononuclear cells and Raji PD-L1 B cells, revealing differences in transient interactions with specific T cell subtypes. The utility of PhoTag in capturing cell–cell interactions will enable detailed profiling of intercellular communication across different biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PhoTag.
Fig. 2: Use of flavins for photocatalytic protein labeling.
Fig. 3: Selective biotinylation within cellular immune synapses.
Fig. 4: PhoTag and multiomics single-cell sequencing analysis of transient PBMC–Raji cell interactions.

Similar content being viewed by others

Data availability

All supplementary figures, experimental details and synthesis information are included in the Supplementary Information. Raw flow cytometry data, raw and processed bulk RNA-seq data and single-cell sequencing data are available through the Harvard Dataverse62 and also available upon request. The MS proteomics data for peptide mapping in Fig. 2 have been deposited to the ProteomeXchange Consortium via the PRIDE63 partner repository with the dataset identifier PXD032203 at https://doi.org/10.6019/PXD032203. Source data are provided with this paper.

Code availability

Custom processing code used for analysis and figure generation is available upon request.

References

  1. Belardi, B., Son, S., Felce, J. H., Dustin, M. L. & Fletcher, D. A. Cell–cell interfaces as specialized compartments directing cell function. Nat. Rev. Mol. Cell Biol. 21, 750–764 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Bechtel, T. J., Reyes-Robles, T., Fadeyi, O. O. & Oslund, R. C. Strategies for monitoring cell–cell interactions. Nat. Chem. Biol. 17, 641–652 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Yamada, S. & Nelson, W. J. Synapses: sites of cell recognition, adhesion, and functional specification. Annu. Rev. Biochem. 76, 267–294 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  5. Dustin, M. L. The immunological synapse. Cancer Immunol. Res. 2, 1023–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yokosuka, T. & Saito, T. The immunological synapse, TCR microclusters, and T cell activation. Curr. Top. Microbiol. Immunol. 340, 81–107 (2010).

    CAS  PubMed  Google Scholar 

  7. Ostroumov, D., Fekete-Drimusz, N., Saborowski, M., Kuhnel, F. & Woller, N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell. Mol. Life Sci. 75, 689–713 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Pasqual, G. et al. Monitoring T cell–dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 553, 496–500 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ge, Y. et al. Enzyme-mediated intercellular proximity labeling for detecting cell–cell interactions. J. Am. Chem. Soc. 141, 1833–1837 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Q. et al. A proximity-tagging system to identify membrane protein–protein interactions. Nat. Methods 15, 715–722 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Martell, J. D. et al. A split horseradish peroxidase for the detection of intercellular protein–protein interactions and sensitive visualization of synapses. Nat. Biotechnol. 34, 774–780 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, Z. et al. Detecting tumor antigen-specific T cells via interaction-dependent fucosyl-biotinylation. Cell 183, 1117–1133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. To, T. L. et al. Photoactivatable protein labeling by singlet oxygen mediated reactions. Bioorg. Med. Chem. Lett. 26, 3359–3363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tamura, T., Takato, M., Shiono, K. & Hamachi, I. Development of a photoactivatable proximity labeling method for the identification of nuclear proteins. Chem. Lett. 49, 145–148 (2020).

    Article  CAS  Google Scholar 

  16. Muller, M. et al. Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nat. Commun. 12, 7036 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gray, H. B. & Winkler, J. R. Electron transfer in proteins. Annu. Rev. Biochem. 65, 537–561 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Williamson, H. R., Dow, B. A. & Davidson, V. L. Mechanisms for control of biological electron transfer reactions. Bioorg. Chem. 57, 213–221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stubbe, J. & van Der Donk, W. A. Protein radicals in enzyme catalysis. Chem. Rev. 98, 705–762 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Pesavento, R. P. & van der Donk, W. A. Tyrosyl radical cofactors. Adv. Protein Chem. 58, 317–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Rees, J. S., Li, X. W., Perrett, S., Lilley, K. S. & Jackson, A. P. Protein neighbors and proximity proteomics. Mol. Cell. Proteom. 14, 2848–2856 (2015).

    Article  CAS  Google Scholar 

  23. Jiang, S. et al. A proteomics approach to the cell-surface interactome using the enzyme-mediated activation of radical sources reaction. Proteomics 12, 54–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Hashimoto, N. et al. Proteomic analysis of ganglioside-associated membrane molecules: substantial basis for molecular clustering. Proteomics 12, 3154–3163 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, X. W. et al. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J. Biol. Chem. 289, 14434–14447 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bar, D. Z. et al. Biotinylation by antibody recognition—a method for proximity labeling. Nat. Methods 15, 127–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Hung, V. et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc. 11, 456–475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vasudevan, P. T. & Li, L. O. Kinetics of phenol oxidation by peroxidase. Appl. Biochem. Biotechnol. 60, 203–215 (1996).

    Article  CAS  Google Scholar 

  30. Conrad, K. S., Manahan, C. C. & Crane, B. R. Photochemistry of flavoprotein light sensors. Nat. Chem. Biol. 10, 801–809 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sato, S., Morita, K. & Nakamura, H. Regulation of target protein knockdown and labeling using ligand-directed Ru(bpy)3 photocatalyst. Bioconjug. Chem. 26, 250–256 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Amini, F., Denison, C., Lin, H. J., Kuo, L. & Kodadek, T. Using oxidative crosslinking and proximity labeling to quantitatively characterize protein–protein and protein–peptide complexes. Chem. Biol. 10, 1115–1127 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Sato, S. & Nakamura, H. Protein chemical labeling using biomimetic radical chemistry. Molecules 24, 3980 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  34. Dongare, P., MacKenzie, I., Wang, D., Nicewicz, D. A. & Meyer, T. J. Oxidation of alkyl benzenes by a flavin photooxidation catalyst on nanostructured metal-oxide films. Proc. Natl Acad. Sci. USA 114, 9279–9283 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mirzakulova, E. et al. Electrode-assisted catalytic water oxidation by a flavin derivative. Nat. Chem. 4, 794–801 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, C. et al. Riboflavin (VB2) photosensitized oxidation of 2′-deoxyguanosine-5′-monophosphate (dGMP) in aqueous solution: a transient intermediates study. Phys. Chem. Chem. Phys. 2, 329–334 (2000).

    Article  CAS  Google Scholar 

  37. Islam, S. D. M., Penzkofer, A. & Hegemann, P. Quantum yield of triplet formation of riboflavin in aqueous solution and of flavin mononucleotide bound to the LOV1 domain of Phot1 from Chlamydomonas reinhardtii. Chem. Phys. 291, 97–114 (2003).

    Article  CAS  Google Scholar 

  38. Chatterjee, S. et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem. Biophys. Res. Commun. 483, 258–263 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Bhagwat, B. et al. Establishment of engineered cell-based assays mediating LAG3 and PD1 immune suppression enables potency measurement of blocking antibodies and assessment of signal transduction. J. Immunol. Methods 456, 7–14 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide–MHC ligand. Nature 436, 578–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Frutos, S. et al. Access to site-specific Fc-cRGD peptide conjugates through streamlined expressed protein ligation. Org. Biomol. Chem. 14, 9549–9553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vila-Perello, M. et al. Streamlined expressed protein ligation using split inteins. J. Am. Chem. Soc. 135, 286–292 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, Y. et al. Antigen-presenting cell-intrinsic PD-1 neutralizes PD-L1 in cis to attenuate PD-1 signaling in T cells. Cell Rep. 24, 379–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hosseini, B. H. et al. Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc. Natl Acad. Sci. USA 106, 17852–17857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dessau, R. B. & Pipper, C. B. “R”—project for statistical computing. Ugeskr. Laeg. 170, 328–330 (2008).

    PubMed  Google Scholar 

  50. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  51. Warnes, G. R., et al. gplots: Various R Programming Tools for Plotting Data (2020).

  52. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu, G., Wang, L., Han, Y. & He, Q. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Laeremans, T. Camelidae single domain antibodies vhh directed against epidermal growth factor receptor and uses therefor. WO 2005/044858 (2005).

  60. Depla, E., Stortelers, C. & Staelens, S. Monovalent, bivalent and trivalent anti human respiratory syncytial virus (hrsv) nanobody constructs for the prevention and/or treatment of respiratory tract infections. US patent 2012/0128669 (2012).

  61. Bryksin, A. V. & Matsumura, I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 48, 463–465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. White, C., Oslund, R., Fadeyi, O. & Reyes-Robles, T. Detection of Cell–Cell Interactions via Photocatalytic Cell Tagging (Harvard Dataverse, 2022).

  63. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to N. Haining, S. Lesley, K. Vora, A. Visintin and T. Wang from Merck & Co., Inc., and P. Sage from Brigham and Women’s Hospital and Harvard Medical School for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

O.O.F. and R.C.O. conceived of the work. O.O.F., R.C.O., T.R.-R., C.H.W., J.H.T., K.A.C., L.L., D.C. and V.M.P. designed and executed experiments. D.H.P. and S.D.O. interpreted results. S.F. and M.V.-P. designed and engineered the VHH–Fc conjugates. S.I., R.C.O and O.O.F. designed and prepared the peptide-based conjugate. E.P.B., D.V. and K.C. screened and identified the anti-PD-L1 VHH. E.C.H., L.R.R., G.P. and D.J.H. provided insight and direction for experimental design. O.O.F., R.C.O., T.R.-R. and C.H.W. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Rob C. Oslund, Tamara Reyes-Robles or Olugbeminiyi O. Fadeyi.

Ethics declarations

Competing interests

R.C.O., T.R.-R., C.H.W., J.H.T., K.A.C., D.H.P., S.I., S.D.O., L.R.R., G.P., L.L., D.C., V.M.P., E.P.B., E.C.H., D.J.H. and O.O.F. were employed by Merck & Co., S.F. and M.V.-P. were employed by SpliceBio and D.V. and K.C. were employed by Ablynx, Inc., during the experimental planning, execution and/or preparation of this manuscript. Merck & Co. has filed patents related to the technology and VHH sequences described herein listing R.C.O., T.R.-R. and O.O.F. as inventors (WO2020247725A1) and R.C.O., E.P.B. and O.O.F. as inventors (63/285,520).

Peer review

Peer review information

Nature Chemical Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42, Notes 1 and 2 and uncropped western blot images of Supplementary figures.

Reporting Summary

Supplementary Data 1

Excel-based table listing T cell gene expression fold change values in the streptavidin-high versus streptavidin-low groups of naive-like CD4+ T cells (cluster 3) from PD-L1-targeted labeling.

Supplementary Data 2

Excel-based table listing T cell gene expression fold change values in the streptavidin-high versus streptavidin-low groups of TEMRA-like CD8+ T cells (cluster 9) from PD-L1-targeted labeling.

Supplementary Data 3

Source data for Supplementary figures.

Source data

Source Data Fig. 2

Unprocessed western blot_800 channel. Unprocessed western blot_700 channel.

Source Data Fig. 3

Statistical source data for Fig. 3i.

Source Data Fig. 4

Statistical source data for Fig. 4b. Numerical data for Fig. 4g.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oslund, R.C., Reyes-Robles, T., White, C.H. et al. Detection of cell–cell interactions via photocatalytic cell tagging. Nat Chem Biol 18, 850–858 (2022). https://doi.org/10.1038/s41589-022-01044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-022-01044-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing