Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temperature-responsive optogenetic probes of cell signaling

Abstract

We describe single-component optogenetic probes whose activation dynamics depend on both light and temperature. We used the BcLOV4 photoreceptor to stimulate Ras and phosphatidyl inositol-3-kinase signaling in mammalian cells, allowing activation over a large dynamic range with low basal levels. Surprisingly, we found that BcLOV4 membrane translocation dynamics could be tuned by both light and temperature such that membrane localization spontaneously decayed at elevated temperatures despite constant illumination. Quantitative modeling predicted BcLOV4 activation dynamics across a range of light and temperature inputs and thus provides an experimental roadmap for BcLOV4-based probes. BcLOV4 drove strong and stable signal activation in both zebrafish and fly cells, and thermal inactivation provided a means to multiplex distinct blue-light sensitive tools in individual mammalian cells. BcLOV4 is thus a versatile photosensor with unique light and temperature sensitivity that enables straightforward generation of broadly applicable optogenetic tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-component BcLOV4 fusions allow control of Ras and PI3K signaling.
Fig. 2: BcLOV-induced signaling dynamics depend on temperature and light exposure.
Fig. 3: BcLOV4 membrane translocation dynamics depend on temperature and light exposure.
Fig. 4: Modeling predicts BcLOV–SOScat-induced ppErk dynamics and reveals dynamic filtering properties of Ras/Erk signaling.
Fig. 5: BcLOV4 and BcLOV–SOScat in zebrafish embryos and Drosophila cells.
Fig. 6: BcLOV4 temperature sensitivity enables orthogonal multiplexing of multiple blue-light sensitive tools in single cells.

Similar content being viewed by others

Data availability

All raw data used to generate the figures can be found at the following link: https://drive.google.com/drive/folders/1h0eDceDplxYUguSpUNyg5CHA4uudZO39?usp=sharing

Code availability

MATLAB code used to fit data and model BcLOV4 activation dynamics can be found at the following link: https://drive.google.com/drive/folders/1h0eDceDplxYUguSpUNyg5CHA4uudZO39?usp=sharing

References

  1. Christie, J. M., Salomon, M., Nozue, K., Wada, M. & Briggs, W. R. LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc. Natl Acad. Sci. USA 96, 8779–8783 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schwerdtfeger, C. & Linden, H. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 22, 4846–4855 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dietler, J. et al. A light-oxygen-voltage receptor integrates light and temperature. J. Mol. Biol. 433, 167107 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Hunt, S. M., Elvin, M., Crosthwaite, S. K. & Heintzen, C. The PAS/LOV protein VIVID controls temperature compensation of circadian clock phase and development in Neurospora crassa. Genes Dev 21, 1964–1974 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gutiérrez-Medina, B. & Candia, C. N. H. Aggregation kinetics of the protein photoreceptor Vivid. Biochim. Biophys. Acta Proteins Proteom 1869, 140620 (2021).

    Article  PubMed  Google Scholar 

  6. Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl Acad. Sci. USA 112, 112–117 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shimizu-Sato, S., Huq, E., Tepperman, J. M. & Quail, P. H. A light-switchable gene promoter system. Nat. Biotechnol. 20, 1041–1044 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, X. X., Chung, H. K., Lam, A. J. & Lin, M. Z. Optical control of protein activity by fluorescent protein domains. Science 338, 810–814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bugaj, L. J., Choksi, A. T., Mesuda, C. K., Kane, R. S. & Schaffer, D. V. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods 10, 249–252 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Glantz, S. T. et al. Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids. Proc. Natl Acad. Sci. USA 115, E7720–E7727 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He, L. et al. Optical control of membrane tethering and interorganellar communication at nanoscales. Chem. Sci. 8, 5275–5281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCubrey, J. A. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 1773, 1263–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Chang, F. et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17, 1263–1293 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Vanhaesebroeck, B., Stephens, L. & Hawkins, P. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 13, 195–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, J. et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol. Cancer 18, 26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bugaj, L. J. et al. Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science 361, eaao3048 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hino, N. et al. ERK-mediated mechanochemical waves direct collective cell polarization. Dev. Cell 53, 646–660.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Johnson, H. E. et al. The spatiotemporal limits of developmental Erk signaling. Dev. Cell 40, 185–192 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson, H. E. & Toettcher, J. E. Signaling dynamics control cell fate in the early Drosophila embryo. Dev. Cell 48, 361–370.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Toettcher, J. E., Gong, D., Lim, W. A. & Weiner, O. D. Light-based feedback for controlling intracellular signaling dynamics. Nat. Methods 8, 837–839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Toettcher, J. E., Weiner, O. D. & Lim, W. A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bugaj, L. J. & Lim, W. A. High-throughput multicolor optogenetics in microwell plates. Nat. Protoc. 14, 2205–2228 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Berlew, E. E., Kuznetsov, I. A., Yamada, K., Bugaj, L. J. & Chow, B. Y. Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible lamellipodia formation. Photochem. Photobiol. Sci. 19, 353–361 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berlew, E. E. et al. Single‐component optogenetic tools for inducible RhoA GTPase signaling. Adv. Biol. (Weinh) 5, 2100810 (2021).

    Article  CAS  Google Scholar 

  30. Hannanta-Anan, P., Glantz, S. T. & Chow, B. Y. Optically inducible membrane recruitment and signaling systems. Curr. Opin. Struct. Biol. 57, 84–92 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suh, B.-C., Inoue, T., Meyer, T. & Hille, B. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454–1457 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157, 1724–1734 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mayr, V., Sturtzel, C., Stadler, M., Grissenberger, S. & Distel, M. Fast dynamic in vivo monitoring of Erk activity at single cell resolution in DREKA zebrafish. Front. Cell Dev. Biol. 6, 111 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Adrian, M., Nijenhuis, W., Hoogstraaten, R. I., Willems, J. & Kapitein, L. C. A phytochrome-derived photoswitch for intracellular transport. ACS Synth. Biol. 6, 1248–1256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Golic, A. E. et al. BlsA is a low to moderate temperature blue light photoreceptor in the human pathogen Acinetobacter baumannii. Front. Microbiol. 10, 1925 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nakasone, Y., Ono, T.-A., Ishii, A., Masuda, S. & Terazima, M. Temperature-sensitive reaction of a photosensor protein YcgF: possibility of a role of temperature sensor. Biochemistry 49, 2288–2296 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Nakasone, Y. et al. Stability of dimer and domain–domain interaction of Arabidopsis phototropin 1 LOV2. J. Mol. Biol. 383, 904–913 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Richter, F. et al. Engineering of temperature- and light-switchable Cas9 variants. Nucleic Acids Res. 44, 10003–10014 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Benedetti, L. et al. Optimized Vivid-derived magnets photodimerizers for subcellular optogenetics. eLife 9, e63230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hernández-Candia, C. N., Casas-Flores, S. & Gutiérrez-Medina, B. Light induces oxidative damage and protein stability in the fungal photoreceptor Vivid. PLoS ONE 13, e0201028 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Van Brederode, M. E., Hoff, W. D., Van Stokkum, I. H., Groot, M. L. & Hellingwerf, K. J. Protein folding thermodynamics applied to the photocycle of the photoactive yellow protein. Biophys. J. 71, 365–380 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Benzinger, D., Ovinnikov, S. & Khammash, M. Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression. bioRxiv 2021.01.07.425755 (2021). https://doi.org/10.1101/2021.01.07.425755

  43. Duan, L. et al. Understanding CRY2 interactions for optical control of intracellular signaling. Nat. Commun. 8, 547 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Santos, M. G., Jorge, S. A. C., Brillet, K. & Pereira, C. A. Improving heterologous protein expression in transfected Drosophila S2 cells as assessed by EGFP expression. Cytotechnology 54, 15–24 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Villefranc, J. A., Amigo, J. & Lawson, N. D. Gateway compatible vectors for analysis of gene function in the zebrafish. Dev. Dyn. 236, 3077–3087 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lamprecht, M. R., Sabatini, D. M. & Carpenter, A. E. CellProfilerTM: free, versatile software for automated biological image analysis. Biotechniques 42, 71–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Wickham, H., François, R., Henry, L. & Müller, K. dplyr: a grammar of data manipulation. R package v.0.8. 0.1 https://CRAN.R-project.org/package=dplyr (2019).

  49. Wickham, H. ggplot2: ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

    Article  Google Scholar 

  50. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Seiler and the CHOP Aquatic Zebrafish Core for assistance in injecting and mounting zebrafish embryos, D. Wu and D. Chenoweth for assistance with TIRF microscopy and H. Johnson and J. Toettcher (Princeton) for providing Drosophila S2 cells. This work was supported by the National Institutes of Health (R35GM138211, R21GM132831 for L.J.B., R35GM133425 for H.D. and B.L., R01NS101106 for E.E.B and B.Y.C. and R01HL152086 to A.F.S.) and the National Science Foundation (Graduate Research Fellowship Program to W.B., CAREER MCB1652003 for E.E.B. and B.Y.C.).

Author information

Authors and Affiliations

Authors

Contributions

W.B., B.Y.C. and L.J.B. conceived the study. W.B., E.E.B., H.D., I.A.K., A.F.S., C.P. and L.J.B. performed experiments and analyzed data. A.F.S., B.L., B.Y.C. and L.J.B. supervised the work. W.B. and L.J.B. wrote the manuscript and made figures, with editing from all authors.

Corresponding author

Correspondence to Lukasz J. Bugaj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemical Biology thanks Matias Zurbriggen, Maxwell Wilson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–16 and movie captions.

Reporting Summary

Supplementary Movie 1

Temperature-dependent decay of BcLOV-mCh membrane localization. HEK 293 T cells expressing BcLOV-mCh were stimulated with 488 nm light and imaged over 40 min. Membrane localization was sustained at lower temperatures (left), but decayed at higher temperatures (right). Time is mm:ss.

Supplementary Movie 2

BcLOV-mCh translocation in zebrafish embryos. 24 hpf zebrafish embryos expressing BcLOV-mCh were stimulated with 488 nm light and imaged with confocal microscopy. Time is mm:ss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benman, W., Berlew, E.E., Deng, H. et al. Temperature-responsive optogenetic probes of cell signaling. Nat Chem Biol 18, 152–160 (2022). https://doi.org/10.1038/s41589-021-00917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00917-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing