An aminoacylation ribozyme evolved from a natural tRNA-sensing T-box riboswitch

Abstract

When the primitive translation system first emerged in the hypothetical RNA world, ribozymes could have been responsible for aminoacylation. Given that naturally occurring T-box riboswitches selectively sense the aminoacylation status of cognate tRNAs, we introduced a domain of random sequence into a T-box–tRNA conjugate and isolated ribozymes that were self-aminoacylating on the 3′-terminal hydroxyl group. One of them, named Tx2.1, recognizes the anticodon and D-loop of tRNA via interaction with its stem I domain, similarly to the parental T-box, and selectively charges N-biotinyl-l-phenylalanine (Bio-lPhe) onto the 3′ end of the cognate tRNA in trans. We also demonstrated the ribosomal synthesis of a Bio-lPhe-initiated peptide in a Tx2.1-coupled in vitro translation system, in which Tx2.1 catalyzed specific tRNA aminoacylation in situ. This suggests that such ribozymes could have coevolved with a primitive translation system in the RNA world.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Strategy to obtain aminoacylating ribozymes from a T-box riboswitch.
Fig. 2: Result after seven rounds of selection and sequence alignment of recovered clones observed more than once in total reads.
Fig. 3: Aminoacylation activity of five ribozymes obtained from in vitro selection.
Fig. 4: Characteristics of Tx2.1.
Fig. 5: Coupling of Tx2.1 with in vitro translation.

Data availability

All raw data are available from the corresponding author upon reasonable request.

References

  1. 1.

    Walter, G. Origin of life: the RNA world. Nature 319, 618 (1986).

    Google Scholar 

  2. 2.

    Yarus, M. A specific amino acid binding site composed of RNA. Science 240, 1751–1758 (1988).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Schimmel, P. The RNP bridge between two worlds. Nat. Rev. Mol. Cell Biol. 12, 135 (2011).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Robertson, M. P. & Joyce, G. F. Highly efficient self-replicating RNA enzymes. Chem. Biol. 21, 238–245 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Saito, H., Kourouklis, D. & Suga, H. An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J. 20, 1797–1806 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Murakami, H., Saito, H. & Suga, H. A versatile tRNA aminoacylation catalyst based on RNA. Chem. Biol. 10, 655–662 (2003).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Murakami, H., Ohta, A., Ashigai, H. & Suga, H. A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods 3, 357–359 (2006).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Xiao, H., Murakami, H., Suga, H. & Ferré-D’Amaré, A. R. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme. Nature 454, 358–361 (2008).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Niwa, N., Yamagishi, Y., Murakami, H. & Suga, H. A flexizyme that selectively charges amino acids activated by a water-friendly leaving group. Bioorg. Med. Chem. Lett. 19, 3892–3894 (2009).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Futai, K., Terasaka, N., Katoh, T. & Suga, H. tRid, an enabling method to isolate previously inaccessible small RNA fractions. Methods 106, 105–111 (2016).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Ohta, A., Murakami, H., Higashimura, E. & Suga, H. Synthesis of polyester by means of genetic code reprogramming. Chem. Biol. 14, 1315–1322 (2007).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Goto, Y. et al. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem. Biol. 3, 120–129 (2008).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Kawakami, T. et al. Diverse backbone-cyclized peptides via codon reprogramming. Nat. Chem. Biol. 5, 888–890 (2009).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Kawakami, T., Murakami, H. & Suga, H. Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem. Biol. 15, 32–42 (2008).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Grundy, F. J., Rollins, S. M. & Henkin, T. M. Interaction between the acceptor end of tRNA and the T box stimulates antitermination in the Bacillus subtilis tyrS gene: a new role for the discriminator base. J. Bacteriol. 176, 4518–4526 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Grundy, F. J. & Henkin, T. M. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell 74, 475–482 (1993).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Grundy, F. J., Winkler, W. C. & Henkin, T. M. tRNA-mediated transcription antitermination in vitro: codon–anticodon pairing independent of the ribosome. Proc. Natl Acad. Sci. USA 99, 11121–11126 (2002).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Yousef, M. R., Grundy, F. J. & Henkin, T. M. tRNA requirements for glyQS antitermination: a new twist on tRNA. RNA 9, 1148–1156 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Grigg, J. C. et al. T box RNA decodes both the information content and geometry of tRNA to affect gene expression. Proc. Natl Acad. Sci. USA 110, 7240–7245 (2013).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Zhang, J. & Ferré-D’Amaré, A. R. Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature 500, 363–366 (2013).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Grigg, J. C. & Ke, A. Structural determinants for geometry and information decoding of tRNA by T box leader RNA. Structure 21, 2025–2032 (2013).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Li, S. et al. Structural basis of amino acid surveillance by higher-order tRNA–mRNA interactions. Nat. Struct. Mol. Biol. 26, 1094–1105 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Zhang, J. & Ferré-D’Amaré, A. R. Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA–mRNA stacking and steric readout. Mol. Cell 55, 148–155 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Suga, H., Lohse, P. A. & Szostak, J. W. Structural and kinetic characterization of an acyl transferase ribozyme. J. Am. Chem. Soc. 120, 1151–1156 (1998).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Lee, N., Bessho, Y., Wei, K., Szostak, J. W. & Suga, H. Ribozyme-catalyzed tRNA aminoacylation. Nat. Struct. Mol. Biol. 7, 28–33 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ellington, A. & Szostak, J. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Robertson, D. & Joyce, G. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Lohse, P. A. & Szostak, J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature 381, 442–444 (1996).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Köhrer, C. & Rajbhandary, U. The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. Methods 44, 129–138 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Caserta, E., Liu, L. C., Grundy, F. J. & Henkin, T. M. Codon–anticodon recognition in the Bacillus subtilis glyQS T box riboswitch: RNA-dependent codon selection outside the ribosome. J. Biol. Chem. 290, 23336–23347 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Kobori, S. & Yokobayashi, Y. High-throughput mutational analysis of a twister ribozyme. Angew. Chem. Int. Ed. Engl. 55, 10354–10357 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Dhamodharan, V., Kobori, S. & Yokobayashi, Y. Large scale mutational and kinetic analysis of a self-hydrolyzing deoxyribozyme. ACS Chem. Biol. 12, 2940–2945 (2017).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Rogers, J. M., Passioura, T. & Suga, H. Nonproteinogenic deep mutational scanning of linear and cyclic peptides. Proc. Natl Acad. Sci. USA 115, 10959–10964 (2018).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Sato, K., Hamada, M., Asai, K. & Mituyama, T. CENTROIDFOLD: a web server for RNA secondary structure prediction. Nucleic Acids Res. 37, W277–W280 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Goto, Y., Iseki, M., Hitomi, A., Murakami, H. & Suga, H. Nonstandard peptide expression under the genetic code consisting of reprogrammed dual sense codons. ACS Chem. Biol. 8, 2630–2634 (2013).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Saito, H., Watanabe, K. & Suga, H. Concurrent molecular recognition of the amino acid and tRNA by a ribozyme. RNA 7, 1867–1878 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Saad, N. Y. et al. Two-codon T-box riboswitch binding two tRNAs. Proc. Natl Acad. Sci. USA 110, 12756–12761 (2013).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Vitreschak, A. G., Mironov, A. A., Lyubetsky, V. A. & Gelfand, M. S. Comparative genomic analysis of T-box regulatory systems in bacteria. RNA 14, 717–735 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Gutiérrez-Preciado, A., Henkin, T. M., Grundy, F. J., Yanofsky, C. & Merino, E. Biochemical features and functional implications of the RNA-based T-box regulatory mechanism. Microbiol. Mol. Biol. Rev. 73, 36–61 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Saito, H. & Suga, H. A ribozyme exclusively aminoacylates the 3′-hydroxyl group of the tRNA terminal adenosine. J. Am. Chem. Soc. 123, 7178–7179 (2001).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Saito, H. & Suga, H. Outersphere and innersphere coordinated metal ions in an aminoacyl-tRNA synthetase ribozyme. Nucleic Acids Res. 30, 5151–5159 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Suddala, K. C. & Zhang, J. An evolving tale of two interacting RNAs—themes and variations of the T-box riboswitch mechanism. IUBMB Life 71, 1167–1180 (2019).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Saad, N. Y. A ribonucleopeptide world at the origin of life. J. Syst. Evol. 56, 1–13 (2018).

    Article  Google Scholar 

  50. 50.

    Kao, C., Zheng, M. & Rüdisser, S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ terminus of RNAs transcribed by T7 RNA polymerase. RNA 5, 1268–1272 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Research S (26220204), the Human Frontier Science Program (RGP0015/2017), the Japan Science and Technology (JST) agency and CREST-Molecular Technology (JPMJCR12L2) to H.S. N.T. is supported by Grants-in-Aid for JSPS Fellows (12J08188) and Grants-in-Aid for Early-Career Scientists (19K16200). S.I. was supported by Grants-in-Aid for JSPS Fellows (JP16J04031). T.K. is supported by a JSPS Grant-in-Aid for Challenging Exploratory Research (26560429).

Author information

Affiliations

Authors

Contributions

S.I. and N.T. conducted biochemical and chemical studies, and T.K. and H.S. supervised the research. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Hiroaki Suga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Supplementary Figs. 1–12

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ishida, S., Terasaka, N., Katoh, T. et al. An aminoacylation ribozyme evolved from a natural tRNA-sensing T-box riboswitch. Nat Chem Biol 16, 702–709 (2020). https://doi.org/10.1038/s41589-020-0500-6

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing