Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetically encoded protein sulfation in mammalian cells

Abstract

Tyrosine sulfation is an important post-translational modification found in higher eukaryotes. Here we report an engineered tyrosyl-tRNA synthetase/tRNA pair that co-translationally incorporates O-sulfotyrosine in response to UAG codons in Escherichia coli and mammalian cells. This platform enables recombinant expression of eukaryotic proteins homogeneously sulfated at chosen sites, which was demonstrated by expressing human heparin cofactor II in mammalian cells in different states of sulfation.

Fig. 1: Genetically encoding sTyr.
Fig. 2: Expression and biochemical analysis of precisely sulfated HCII.

Data availability

Data associated with this work are available upon request from the corresponding author.

References

  1. 1.

    Moore, K. L. Protein tyrosine sulfation: a critical posttranslation modification in plants and animals. Proc. Natl Acad. Sci. USA 106, 14741–14742 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Seibert, C. & Sakmar, T. P. Toward a framework for sulfoproteomics: synthesis and characterization of sulfotyrosine-containing peptides. Biopolymers 90, 459–477 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Stone, M. J., Chuang, S., Hou, X., Shoham, M. & Zhu, J. Z. Tyrosine sulfation: an increasingly recognised post-translational modification of secreted proteins. New Biotechnol. 25, 299–317 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Yang, Y. S. et al. Tyrosine sulfation as a protein post-translational modification. Molecules (Basel, Switzerland) 20, 2138–2164 (2015).

    Article  Google Scholar 

  5. 5.

    Farzan, M. et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    Huang, C.-c et al. Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc. Natl Acad. Sci. USA 101, 2706–2711 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    Li, X., Hitomi, J. & Liu, C. C. Characterization of a sulfated anti-HIV antibody using an expanded genetic code. Biochemistry 57, 2903–2907 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Stone, M. J. & Payne, R. J. Homogeneous sulfopeptides and sulfoproteins: synthetic approaches and applications to characterize the effects of tyrosine sulfation on biochemical function. Acc. Chem. Res. 48, 2251–2261 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Thompson, R. E. et al. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors. Nat. Chem. 9, 909–917 (2017).

    Article  Google Scholar 

  10. 10.

    Mikkelsen, J., Thomsen, J. & Ezban, M. Heterogeneity in the tyrosine sulfation Chinese hamster ovary cell produced recombinant FVIII. Biochemistry 30, 1533–1537 (1991).

    CAS  Article  Google Scholar 

  11. 11.

    Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    Article  Google Scholar 

  12. 12.

    Italia, J. S. et al. Expanding the genetic code of mammalian cells. Biochem. Soc. Trans. 45, 555–562 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Young, D. D. & Schultz, P. G. Playing with the molecules of life. ACS Chem. Biol. 13, 854–870 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Liu, C. C., Brustad, E., Liu, W. & Schultz, P. G. Crystal structure of a biosynthetic sulfo-hirudin complexed to thrombin. J. Am. Chem. Soc. 129, 10648–10649 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    Liu, C. C. & Schultz, P. G. Recombinant expression of selectively sulfated proteins in Escherichia coli. Nat. Biotechnol. 24, 1436–1440 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Watson, E. E. et al. Mosquito-derived anophelin sulfoproteins are potent antithrombotics. ACS Central Sci. 4, 468–476 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Italia, J. S., Latour, C., Wrobel, C. J. & Chatterjee, A. Resurrecting the bacterial tyrosyl-tRNA synthetase/tRNA pair for expanding the genetic code of both E. coli and eukaryotes. Cell Chem. Biol. 25, 1304–1312 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Chin, J. W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    Dumas, A., Lercher, L., Spicer, C. D. & Davis, B. G. Designing logical codon reassignment—expanding the chemistry in biology. Chem. Sci. 6, 50–69 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Italia, J. S. et al. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat. Chem. Biol. 13, 446–450 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Tollefsen, D. M. Heparin cofactor II. Adv. Exp. Med. Biol. 425, 35–44 (1997).

    CAS  Article  Google Scholar 

  22. 22.

    Tollefsen, D. M. Heparin cofactor II modulates the response to vascular injury. Arterioscler. Thromb. Vasc. Biol. 27, 454–460 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    Hortin, G., Tollefsen, D. & Strauss, A. W. Identification of two sites of sulfation of human heparin cofactor II. J. Biol. Chem. 261, 15827–15830 (1986).

    CAS  PubMed  Google Scholar 

  24. 24.

    Ciaccia, A. V., Monroe, D. M. & Church, F. C. Arginine 200 of heparin cofactor II promotes intramolecular interactions of the acidic domain implication for thrombin inhibition. J. Biol. Chem. 272, 14074–14079 (1997).

    CAS  Article  Google Scholar 

  25. 25.

    Mitchell, J. W. & Church, F. C. Aspartic acid residues 72 and 75 and tyrosine-sulfate 73 of heparin cofactor II promote intramolecular interactions during glycosaminoglycan binding and thrombin inhibition. J. Biol. Chem. 277, 19823–19830 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    Zheng, Y., Lewis, T. L. Jr, Igo, P., Polleux, F. & Chatterjee, A. Virus-enabled optimization and delivery of the genetic machinery for efficient unnatural amino acid mutagenesis in mammalian cells and tissues. ACS Synth. Biol. 6, 13–18 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D.M. Monroe III (UNC) for helpful discussions on the HCII kinetic assay. This work was supported by the National Institutes of Health (R01GM124319 and R01GM126220 to A.C.; 1R01GM118431 and 1R01GM117004 to E.W.).

Author information

Affiliations

Authors

Contributions

A.C. and J.S.I. designed the experiments. J.S.I. conducted all experiments. C.M.H. and C.L. assisted with cloning and protein expression. J.C.P. performed the MS analyses of HCII and E.W. supervised. A.C. and J.S.I. prepared the manuscript.

Corresponding author

Correspondence to Abhishek Chatterjee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Table 1 and Note.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Italia, J.S., Peeler, J.C., Hillenbrand, C.M. et al. Genetically encoded protein sulfation in mammalian cells. Nat Chem Biol 16, 379–382 (2020). https://doi.org/10.1038/s41589-020-0493-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing