Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development

Abstract

A tumorigenic factor, AIMP2 lacking exon 2 (AIMP2-DX2), is often upregulated in many cancers. However, how its cellular level is determined is not understood. Here, we report heat-shock protein HSP70 as a critical determinant for the level of AIMP2-DX2. Interaction of the two factors was identified by interactome analysis and structurally determined by X-ray crystallography and NMR analyses. HSP70 recognizes the amino (N)-terminal flexible region, as well as the glutathione S-transferase domain of AIMP2-DX2, via its substrate-binding domain, thus blocking the Siah1-dependent ubiquitination of AIMP2-DX2. AIMP2-DX2-induced cell transformation and cancer progression in vivo was further augmented by HSP70. A positive correlation between HSP70 and AIMP2-DX2 levels was shown in various lung cancer cell lines and patient tissues. Chemical intervention in the AIMP2-DX2–HSP70 interaction suppressed cancer cell growth in vitro and in vivo. Thus, this work demonstrates the importance of the interaction between AIMP2-DX2 and HSP70 on tumor progression and its therapeutic potential against cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Interaction between DX2 and HSP70.
Fig. 2: Significance of HSP70 for stabilization of DX2.
Fig. 3: Structural determination of the interaction between DX2 and HSP70.
Fig. 4: HSP70-mediated protection of DX2 from Siah1-mediated degradation.
Fig. 5: Effect of the protein–protein interaction inhibitor, BC-DXI-495, on DX2-mediated proliferation.
Fig. 6: Mode of action of BC-DXI-495 on DX2.

Data availability

All data generated or analyzed during this study are included in this published article or are available from the corresponding author upon request. The structure coordinates have been deposited in the Protein Data Bank under codes 6JPV for HSP70 395-537-MYRLPNVHG and 6K39 for HSP70 395-537-YRLPNVHG. NMR assignment data for 13C- and 15N-labeled DX251-251-C136S-C222S have been deposited at the Biological Magnetic Resonance Bank (BMRB) with accession code 27914.

References

  1. 1.

    Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Mayer, M. P. Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem. Sci. 38, 507–514 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999).

    CAS  PubMed  Google Scholar 

  4. 4.

    Kumar, S. et al. Targeting Hsp70: a possible therapy for cancer. Cancer Lett. 374, 156–166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Goloudina, A. R., Demidov, O. N. & Garrido, C. Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett. 325, 117–124 (2012).

    CAS  PubMed  Google Scholar 

  6. 6.

    Calderwood, S. K. & Gong, J. Heat shock proteins promote cancer: it’s a protection racket. Trends Biochem. Sci. 41, 311–323 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Wu, J. et al. Heat shock proteins and cancer. Trends Pharmacol. Sci. 38, 226–256 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Sherman, M. Y. & Gabai, V. L. Hsp70 in cancer: back to the future. Oncogene 34, 4153–4161 (2015).

    CAS  PubMed  Google Scholar 

  9. 9.

    Alderson, T. R., Kim, J. H. & Markley, J. L. Dynamical structures of Hsp70 and Hsp70-Hsp40 complexes. Structure 24, 1014–1030 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Flaherty, K. M., DeLuca-Flaherty, C. & McKay, D. B. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346, 623–628 (1990).

    CAS  PubMed  Google Scholar 

  11. 11.

    Zhu, X. et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Sekhar, A., Rosenzweig, R., Bouvignies, G. & Kay, L. E. Hsp70 biases the folding pathways of client proteins. Proc. Natl Acad. Sci. USA 113, E2794–E2801 (2016).

    CAS  PubMed  Google Scholar 

  13. 13.

    Mayer, M. P. & Gierasch, L. M. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J. Biol. Chem. 294, 2085–2097 (2019).

    CAS  PubMed  Google Scholar 

  14. 14.

    Sekhar, A., Rosenzweig, R., Bouvignies, G. & Kay, L. E. Mapping the conformation of a client protein through the Hsp70 functional cycle. Proc. Natl Acad. Sci. USA 112, 10395–10400 (2015).

    CAS  PubMed  Google Scholar 

  15. 15.

    Alvira, S. et al. Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop. Nat. Commun. 5, 5484 (2014).

    PubMed  Google Scholar 

  16. 16.

    Nillegoda, N. B., Wentink, A. S. & Bukau, B. Protein disaggregation in multicellular organisms. Trends Biochem. Sci. 43, 285–300 (2018).

    CAS  PubMed  Google Scholar 

  17. 17.

    Mashaghi, A. et al. Alternative modes of client binding enable functional plasticity of Hsp70. Nature 539, 448–451 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Fernandez-Fernandez, M. R., Gragera, M., Ochoa-Ibarrola, L., Quintana-Gallardo, L. & Valpuesta, J. M. Hsp70 - a master regulator in protein degradation. FEBS Lett. 591, 2648–2660 (2017).

    CAS  PubMed  Google Scholar 

  19. 19.

    Kim, S., You, S. & Hwang, D. Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping. Nat. Rev. Cancer 11, 708–718 (2011).

    CAS  PubMed  Google Scholar 

  20. 20.

    Park, S. G., Ewalt, K. L. & Kim, S. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers. Trends Biochem. Sci. 30, 569–574 (2005).

    CAS  PubMed  Google Scholar 

  21. 21.

    Han, J. M. et al. AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc. Natl Acad. Sci. USA 105, 11206–11211 (2008).

    CAS  PubMed  Google Scholar 

  22. 22.

    Kim, M. J. et al. Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation. Nat. Genet. 34, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  23. 23.

    Kim, D. G. et al. Oncogenic mutation of AIMP2/p38 inhibits its tumor-suppressive interaction with Smurf2. Cancer Res. 76, 3422–3436 (2016).

    CAS  PubMed  Google Scholar 

  24. 24.

    Choi, J. W. et al. AIMP2 promotes TNFα-dependent apoptosis via ubiquitin-mediated degradation of TRAF2. J. Cell Sci. 122, 2710–2715 (2009).

    CAS  PubMed  Google Scholar 

  25. 25.

    Yum, M. K. et al. AIMP2 controls intestinal stem cell compartments and tumorigenesis by modulating Wnt/β-catenin signaling. Cancer Res. 76, 4559–4568 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Choi, J. W. et al. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis. PLoS Genet. 7, e1001351 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Choi, J. W. et al. Splicing variant of AIMP2 as an effective target against chemoresistant ovarian cancer. J. Mol. Cell Biol. 4, 164–173 (2012).

    PubMed  Google Scholar 

  28. 28.

    Jung, J. Y. et al. Ratio of autoantibodies of tumor suppressor AIMP2 and its oncogenic variant is associated with clinical outcome in lung cancer. J. Cancer 8, 1347–1354 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lee, H. S. et al. Chemical suppression of an oncogenic splicing variant of AIMP2 induces tumour regression. Biochem. J. 454, 411–416 (2013).

    CAS  PubMed  Google Scholar 

  30. 30.

    Won, Y. S. & Lee, S. W. Selective regression of cancer cells expressing a splicing variant of AIMP2 through targeted RNA replacement by trans-splicing ribozyme. J. Biotechnol. 158, 44–49 (2012).

    CAS  PubMed  Google Scholar 

  31. 31.

    Rohde, M. et al. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev. 19, 570–582 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Cesa, L. C. et al. X-linked inhibitor of apoptosis protein (XIAP) is a client of heat shock protein 70 (Hsp70) and a biomarker of its inhibition. J. Biol. Chem. 293, 2370–2380 (2018).

    CAS  PubMed  Google Scholar 

  33. 33.

    Clerico, E. M., Tilitsky, J. M., Meng, W. & Gierasch, L. M. How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J. Mol. Biol. 427, 1575–1588 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Mayer, M. P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Liebscher, M. & Roujeinikova, A. Allosteric coupling between the lid and interdomain linker in DnaK revealed by inhibitor binding studies. J. Bacteriol. 191, 1456–1462 (2009).

    CAS  PubMed  Google Scholar 

  36. 36.

    Zhang, P., Leu, J. I., Murphy, M. E., George, D. L. & Marmorstein, R. Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate. PLoS ONE 9, e103518 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Xu, W. et al. Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex. Nat. Struct. Mol. Biol. 12, 120–126 (2005).

    CAS  PubMed  Google Scholar 

  38. 38.

    Oh, A. Y. et al. Inhibiting DX2-p14/ARF interaction exerts antitumor effects in lung cancer and delays tumor progression. Cancer Res. 76, 4791–4804 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7, 169–181 (2007).

    CAS  PubMed  Google Scholar 

  40. 40.

    Kwon, N. H., Fox P. L. & Kim, S. Aminoacyl-tRNA synthetases as therapeutic targets. Nat. Rev. Drug Discov. 18, 629–650 (2019).

    CAS  PubMed  Google Scholar 

  41. 41.

    Song, J. S. et al. Preclinical pharmacokinetics of PDE-310, a novel PDE4 inhibitor. Drug Metab. Pharmacokinet. 26, 192–200 (2011).

    CAS  PubMed  Google Scholar 

  42. 42.

    Verchot, J. Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. Front. Plant Sci. 3, 275 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Taniguchi, M. et al. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system. J. Biosci. Bioeng. 121, 591–598 (2016).

    CAS  PubMed  Google Scholar 

  44. 44.

    Meng, W., Clerico, E. M., McArthur, N. & Gierasch, L. M. Allosteric landscapes of eukaryotic cytoplasmic Hsp70s are shaped by evolutionary tuning of key interfaces. Proc. Natl Acad. Sci. USA 115, 11970–11975 (2018).

    CAS  PubMed  Google Scholar 

  45. 45.

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  46. 46.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS  Google Scholar 

  47. 47.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Hassan, A. Q. et al. The novolactone natural product disrupts the allosteric regulation of Hsp70. Chem. Biol. 22, 87–97 (2015).

    CAS  PubMed  Google Scholar 

  49. 49.

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Dominguez, C., Boelens, R. & Bonvin, A. M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    CAS  PubMed  Google Scholar 

  51. 51.

    Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Alexander, N., Woetzel, N. & Meiler, J. bcl::Cluster: a method for clustering biological molecules coupled with visualization in the Pymol molecular graphics system. IEEE Int. Conf. Comput. Adv. Bio. Med. Sci. 2011, 13–18 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Gulcin, I. & Taslimi, P. Sulfonamide inhibitors: a patent review 2013–present. Expert Opin. Ther. Pat. 28, 541–549 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Global Frontier Project grant (no. NRF-M3A6A4-2010-0029785) and the IMRCTR grant (no. NRF-2018R1A5A2023127) of the National Research Foundation funded by the Ministry of Science and ICT of Korea. We thank T. Otomo of The Scripps Research Institute for helpful discussions. X-ray diffraction data were collected at Pohang Accelerator Laboratory beamlines 5C, 7A and 11C and Photon Factory beamline 1A. We used the NMR instruments of the Protein Structure Group at the Korea Basic Science Institute.

Author information

Affiliations

Authors

Contributions

S.L., H.Y.C., D.G.K. and S.K. conceived the study. S.L., H.Y.C., D.G.K., M.H.K., K.L., Y.H.J. and S.K. designed all the experiments. S.L., D.G.K. and Y.R. performed and analyzed most experiments including cell and molecular biological experiment and in vivo analysis. H.Y.C., S.Y.S. and A.U.M. performed and analyzed X-ray crystallography and NMR experiments. M.K., D.B. and A.S. synthesized all the BC-DXI compounds. Y.L. performed and analyzed the in vitro pull-down assay between DX2 and HSP70 or HSP90. J.L. and W.S.Y. performed mass spectrometry analysis. H.K.K. took the required fluorescence images. M.H.K., K.L., Y.H.J. and S.K. reviewed and discussed the data. S.L., H.Y.C., D.G.K. and S.K. wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Sunghoon Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and Figs. 1–25.

Reporting Summary

Supplementary Note

Synthetic procedures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, S., Cho, H.Y., Kim, D.G. et al. Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development. Nat Chem Biol 16, 31–41 (2020). https://doi.org/10.1038/s41589-019-0415-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing