Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15

Abstract

The investigational drugs E7820, indisulam and tasisulam (aryl-sulfonamides) promote the degradation of the splicing factor RBM39 in a proteasome-dependent mechanism. While the activity critically depends on the cullin RING ligase substrate receptor DCAF15, the molecular details remain elusive. Here we present the cryo-EM structure of the DDB1–DCAF15–DDA1 core ligase complex bound to RBM39 and E7820 at a resolution of 4.4 Å, together with crystal structures of engineered subcomplexes. We show that DCAF15 adopts a new fold stabilized by DDA1, and that extensive protein–protein contacts between the ligase and substrate mitigate low affinity interactions between aryl-sulfonamides and DCAF15. Our data demonstrate how aryl-sulfonamides neo-functionalize a shallow, non-conserved pocket on DCAF15 to selectively bind and degrade RBM39 and the closely related splicing factor RBM23 without the requirement for a high-affinity ligand, which has broad implications for the de novo discovery of molecular glue degraders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cryo-EM structure of the DDB1∆B–DCAF15–DDA1 complex bound to E7820 and RBM39RRM2.
Fig. 2: Crystal structure of the DDB1∆B–DCAF15split–DDA1–E7820–RBM39RRM2 complex.
Fig. 3: DDA1 stabilizes the CRL4DCAF15 complex and facilitates RBM39 recruitment.
Fig. 4: Aryl-sulfonamide binding to DCAF15.
Fig. 5: Interprotein contacts between DCAF15 and RBM39.
Fig. 6: Topological and evolutionary constraints on E7820 activity.

Data availability

Structural coordinates for DDB1∆B–DDA1–DCAF15–E7820–RBM39, DDB1∆B–DDA1–DCAF15–tasisulam–RBM39 and DDB1∆B–DDA1–DCAF15–indisulam–RBM39 have been deposited in the PDB under accession numbers 6Q0R, 6Q0V and 6Q0W. The cryo-EM volume data are available at the Electron Microscopy Data Bank under accession numbers EMD-20554 and EMD-20553. MS raw data files have been deposited in the Proteomics Identifications archive under accession number PXD014536. Other data and materials are available from the authors upon reasonable request.

References

  1. 1.

    Salami, J. & Crews, C. M. Waste disposal—an attractive strategy for cancer therapy. Science 355, 1163–1167 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Chamberlain, P. P. et al. Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21, 803–809 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    Fischer, E. S., Park, E., Eck, M. J. & Thoma, N. H. SPLINTS: small-molecule protein ligand interface stabilizers. Curr. Opin. Struct. Biol. 37, 115–122 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Fischer, E. S. et al. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  Google Scholar 

  8. 8.

    Gandhi, A. K. et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4CRBN. Br. J. Haematol. 164, 811–821 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife 7, e38430 (2018).

    Article  Google Scholar 

  10. 10.

    Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).

    Article  Google Scholar 

  11. 11.

    Sheard, L. B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    Uehara, T. et al. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13, 675–680 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    Article  Google Scholar 

  15. 15.

    Ozawa, Y. et al. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur. J. Cancer 37, 2275–2282 (2001).

    CAS  Article  Google Scholar 

  16. 16.

    Wang, E. et al. Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell 35, 369–384 (2019). e367.

    Article  Google Scholar 

  17. 17.

    Assi, R. et al. Final results of a phase 2, open-label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer 124, 2758–2765 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Petzold, G., Fischer, E. S. & Thoma, N. H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4 ubiquitin ligase. Nature 532, 127–130 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr. 71, 136–153 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Fischer, E. S. et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147, 1024–1039 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Zimmerman, E. S., . & Schulman, B. A. & Zheng, N. Structural assembly of cullin-RING ubiquitin ligase complexes. Curr. Opin. Struct. Biol. 20, 714–721 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Jin, J., Arias, E. E., Chen, J., Harper, J. W. & Walter, J. C. A family of diverse Cul4–Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell 23, 709–721 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    Shabek, N. et al. Structural insights into DDA1 function as a core component of the CRL4–DDB1 ubiquitin ligase. Cell Disco. 4, 67 (2018).

    Article  Google Scholar 

  25. 25.

    Olma, M. H. et al. An interaction network of the mammalian COP9 signalosome identifies Dda1 as a core subunit of multiple Cul4-based E3 ligases. J. Cell Sci. 122, 1035–1044 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    Cavadini, S. et al. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531, 598–603 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535, 252–257 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–W302 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    Abdulrahman, W. et al. A set of baculovirus transfer vectors for screening of affinity tags and parallel expression strategies. Anal. Biochem. 385, 383–385 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Mccoy, A. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  35. 35.

    Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Moriya, T. et al. High-resolution single particle analysis from electron cryo-microscopy images using SPHIRE. J. Vis. Exp. 123, e55448 (2017).

    Google Scholar 

  39. 39.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    Article  Google Scholar 

  40. 40.

    Link, A. J. & LaBaer, J. Trichloroacetic acid (TCA) precipitation of proteins. Cold Spring Harb. Protoc. 2011, 993–994 (2011).

    PubMed  Google Scholar 

  41. 41.

    Gundry, R. L. et al. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr. Protoc. Mol. Biol. Chapter 10, Unit10.25 (2009).

Download references

Acknowledgements

We acknowledge H.-S. Seo for help with ITC experiments. Cryo-EM data were collected at the UMass cryo-EM facility, with help from K. Song and C. Xu. Financial support for this work was provided by NIH grant NCI R01CA214608 (to E.S.F.) and an F32 fellowship 1F32CA232772-01 (to T.F.). E.S.F. is a Damon Runyon-Rachleff Innovator supported in part by the Damon Runyon Cancer Research Foundation (DRR-50–18). This work is based upon research conducted at the Northeastern Collaborative Access Team beamlines, which are funded by NIH NIGMS (P41 GM103403) and NIH-ORIP HEI grant (S10 RR029205). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated by Argonne National Laboratory under contract number DE-AC02-06CH11357. This research was, in part, supported by the National Cancer Institute’s National cryo-EM facility at the Frederick National Laboratory for Cancer Research.

Author information

Affiliations

Authors

Contributions

T.B.F., H.Y., N.S.G., R.P.N. and E.S.F. initiated the project and designed experiments; T.B.F., H.Y. and R.P.N. conducted protein purification; T.B.F. performed crystallization and cryo-EM experiments; H.Y. developed and performed biochemical assays; R.P.N., T.B.F. and E.S.F. collected and processed X-ray diffraction data; N.A.E. and K.A.D. performed the MS experiments; H.Y., Z.L. and Q.C. synthesized small molecules with input from T.Z; N.S.G. and E.S.F. supervised the project; and T.B.F., H.Y. and E.S.F. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Eric S. Fischer.

Ethics declarations

Competing interests

E.S.F. is a founder and/or member of the scientific advisory board (SAB) and equity holder of C4 Therapeutics and Civetta Therapeutics, and a consultant to Novartis, AbbVie and Pfizer. The Fischer laboratory receives research funding from Novartis, Deerfield and Astellas. N.S.G. is a founder, scientific advisory board member and equity holder in Gatekeeper, Syros, Petra, C4, B2S and Soltego. The Gray laboratory receives or has received research funding from Novartis, Takeda, Astellas, Taiho, Janssen, Kinogen, Voronoi, Her2llc, Deerfield and Sanofi. N.S.G., E.S.F, H.Y., Q.C., T.Z., T.F., R.P.N and K.A.D. are inventors on patent applications (PCT/US2018/065701 and PCT/US2019/014919) submitted by the Dana-Farber Cancer Institute.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Supplementary Figs. 1–6

Reporting Summary

Supplementary Note

Synthetic procedures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faust, T.B., Yoon, H., Nowak, R.P. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat Chem Biol 16, 7–14 (2020). https://doi.org/10.1038/s41589-019-0378-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing