Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation

Abstract

Toll-like receptor (TLR)/myeloid differentiation primary response protein (MYD88) signaling aggravates sepsis by impairing neutrophil migration to infection sites. However, the role of intracellular fatty acids in TLR/MYD88 signaling is unclear. Here, inhibition of fatty acid synthase by C75 improved neutrophil chemotaxis and increased the survival of mice with sepsis in cecal ligation puncture and lipopolysaccharide-induced septic shock models. C75 specifically blocked TLR/MYD88 signaling in neutrophils. Treatment with GSK2194069 that targets a different domain of fatty acid synthase, did not block TLR signaling or MYD88 palmitoylation. De novo fatty acid synthesis and CD36-mediated exogenous fatty acid incorporation contributed to MYD88 palmitoylation. The binding of IRAK4 to the MYD88 intermediate domain and downstream signal activation required MYD88 palmitoylation at cysteine 113. MYD88 was palmitoylated by ZDHHC6, and ZDHHC6 knockdown decreased MYD88 palmitoylation and TLR/MYD88 activation upon lipopolysaccharide stimulus. Thus, intracellular saturated fatty acid-dependent palmitoylation of MYD88 by ZDHHC6 is a therapeutic target of sepsis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A FASN inhibitor, C75, lengthens the survival of mice with sepsis.
Fig. 2: C75 reduces Toll-like receptor-specific inflammatory responses.
Fig. 3: FASN inhibitor affects a common adapter MYD88 to reduce inflammation.
Fig. 4: MYD88 is FASN-dependently palmitoylated using two sources of palmitate.
Fig. 5: Palmitoylation of MYD88 at C113 is required for IRAK4 recruitment and activation of TLR4-MYD88 signaling.
Fig. 6: MYD88 is potentially palmitoylated by ZDHHC6.

Data availability

Any Supplementary information, chemical compound information are available in the online version of the paper. The data that support the findings of this study are available from the corresponding author upon request.

References

  1. 1.

    Hotchkiss, R. S., Monneret, G. & Payen, D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13, 862–874 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Cohen, J. et al. Sepsis: a roadmap for future research. Lancet Infect. Dis. 15, 581–614 (2015).

    Article  Google Scholar 

  3. 3.

    Foxman, E. F., Campbell, J. J. & Butcher, E. C. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139, 1349–1360 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    Phillipson, M. & Kubes, P. The neutrophil in vascular inflammation. Nat. Med. 17, 1381–1390 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Fessler, M. B., Rudel, L. L. & Brown, M. J. Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Curr. Opin. Lipidol. 20, 379 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Huang, S. et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J. Lipid Res. 53, 2002–2013 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Fritsche, K. L. The science of fatty acids and inflammation. Adv. Nutr. 6, 293S–301S (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Lancaster, G. I. et al. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab. 27, 1096–1110 e1095 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Wei, X. et al. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539, 294–298 (2016).

    Article  Google Scholar 

  11. 11.

    Salaun, C., Greaves, J. & Chamberlain, L. H. The intracellular dynamic of protein palmitoylation. J. Cell Biol. 191, 1229–1238 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Alves-Filho, J. C., de Freitas, A., Russo, M. & Cunha, F. Q. Toll-like receptor 4 signaling leads to neutrophil migration impairment in polymicrobial sepsis. Crit. Care Med. 34, 461–470 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    Kuhajda, F. P. et al. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl Acad. Sci. USA 97, 3450–3454 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    Duarte, D. B., Vasko, M. R. & Fehrenbacher, J. C. Models of inflammation: carrageenan air pouch. Curr. Protoc. Pharmacol. 72, 1–9 (2016).

    Google Scholar 

  15. 15.

    Tamassia, N. et al. The MYD88-Independent pathway is not mobilized in human neutrophils stimulated via TLR4. J. Immunol. 178, 7344–7356 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    Medzhitov, R. et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2, 253–258 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    Article  Google Scholar 

  18. 18.

    Into, T. et al. Regulation of MyD88-dependent signaling events by S-nitrosylation retards Toll-like receptor signal transduction and initiation of acute-phase immune responses. Mol. Cell. Biol. 28, 1338–1347 (2007).

    Article  Google Scholar 

  19. 19.

    Farrar, M. A., Alberol-Ila, J. & Perlmutter, R. M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383, 178–181 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    Xie, Y. et al. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites. Sci. Rep. 6, 28249 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Dekker, F. J. et al. Small-molecule inhibition of APT1 affects ras localization and signaling. Nat. Chem. Biol. 6, 449–456 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Carroll, R. G. et al. An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation. J. Biol. Chem. 293, 5509–5521 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Alexander, J. K. et al. Palmitoylation of nicotinic acetylcholine receptors. J. Mol. Neurosci. 40, 12–20 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    Janssens, S., Burns, K., Vercammen, E., Tschopp, J. & Beyaert, R. MyD88S, a splice variant of MyD88, differentially modulates NF‐κB‐ and AP‐1‐dependent gene expression. FEBS Lett. 548, 103–107 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    Burns, K. et al. Inhibition of interleukin 1 Receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263–268 (2003).

    Article  Google Scholar 

  26. 26.

    Avbelj, M., Horvat, S. & Jerala, R. The role of intermediary domain of MyD88 in cell activation and therapeutic inhibition of TLRs. J. Immunol. 187, 2394–2404 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Loiarro, M. et al. Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases. J. Biol. Chem. 284, 28093–28103 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Fukata, Y., Bredt, D. S. & Fukata, M. in The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology (eds Kittler, J. T. & Moss, S. J.) Chapter 5 (CRC Press, 2006).

  29. 29.

    Ohno, Y. et al. Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system. Mol. Biol. Cell 23, 4543–4551 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Fukata, Y. & Fukata, M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci. 11, 161–175 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Fukata, Y., Iwanaga, T. & Fukata, M. Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells. Methods 40, 177–182 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153–161 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Zhu, X. et al. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J. Lipid Res. 51, 3196–3206 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Moon, J.-S. et al. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J. Clin. Invest. 125, 665–680 (2015).

    Article  Google Scholar 

  36. 36.

    Ruysschaert, J.-M. & Lonez, C. Role of lipid microdomains in TLR-mediated signalling. Biochim. Biophys. Acta, Biomembr. 1848, 1860–1867 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Gorleku, O. A., Barns, A.-M., Prescott, G. R., Greaves, J. & Chamberlain, L. H. Endoplasmic reticulum localization of dhhc palmitoyltransferases mediated by lysine-based sorting signals. J. Biol. Chem. 286, 39573–39584 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    Lakkaraju, A. K. K. et al. Palmitoylated calnexin is a key component of the ribosome–translocon complex. EMBO J. 31, 1823–1835 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Fredericks, G. J. et al. Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. Proc. Natl Acad. Sci. USA 111, 16478–16483 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Reid, D. W. & Nicchitta, C. V. Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 16, 221–231 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Fiorentino, M. et al. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. Lab. Invest. 88, 1340–1348 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    Wei, X. et al. De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. J. Biol. Chem. 286, 2933–2945 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Wei, X. et al. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin 2. Cell Host Microbe 11, 140–152 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    Coleman, R. A., Rao, P., Fogelsong, R. J. & Bardes, E. 2-Bromopalmitoyl-CoA and 2-bromopalmitate: promiscuous inhibitors of membrane-bound enzymes. Biochim. Biophys. Acta, Lipids Lipid Metab. 1125, 203–209 (1992).

    CAS  Article  Google Scholar 

  45. 45.

    Zheng, B., Zhu, S. & Wu, X. Clickable analogue of cerulenin as chemical probe to explore protein palmitoylation. ACS Chem. Biol. 10, 115–121 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Thupari, J. N., Landree, L. E., Ronnett, G. V. & Kuhajda, F. P. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Proc. Natl Acad. Sci. USA 99, 9498–9502 (2002).

    CAS  Article  Google Scholar 

  47. 47.

    Jang, H. D., Yoon, K., Shin, Y. J., Kim, J. & Lee, S. Y. PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit. J .Biol. Chem. 279, 24873–24880 (2004).

    CAS  Article  Google Scholar 

  48. 48.

    Fujii, S. et al. Nr0b1 is a negative regulator of Zscan4c in mouse embryonic stem cells. Sci. Rep. 5, 9146 (2015).

    Article  Google Scholar 

  49. 49.

    Shin, J. et al. Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells. eLife 5, e10877 (2016).

    Article  Google Scholar 

  50. 50.

    Yap, M. C. et al. Rapid and selective detection of fatty acylated proteins using omega-alkynyl-fatty acids and click chemistry. J. Lipid Res. 51, 1566–1580 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    Charron, G. et al. Robust fluorescent detection of protein fatty-acylation with chemical reporters. J. Am. Chem. Soc. 131, 4967–4975 (2009).

    CAS  Article  Google Scholar 

  52. 52.

    Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    CAS  Article  Google Scholar 

  53. 53.

    Hwang, H. et al. In-depth analysis of site-specific N-glycosylation in vitronectin from human plasma by tandem mass spectrometry with immunoprecipitation. Anal. Bioanal. Chem. 406, 7999–8011 (2014).

    CAS  Article  Google Scholar 

  54. 54.

    Sun, N. et al. Quantitative proteome and transcriptome analysis of the archaeon thermoplasma acidophilum cultured under aerobic and anaerobic conditions. J. Proteome Res. 9, 4839–4850 (2010).

    CAS  Article  Google Scholar 

  55. 55.

    Millius, A. & Weiner, O. D. Chemotaxis in neutrophil-like HL-60 cells. Methods Mol. Biol. 571, 167–177 (2009).

    CAS  Article  Google Scholar 

  56. 56.

    Soderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  Google Scholar 

  57. 57.

    Rittirsch, D., Huber-Lang, M. S., Flierl, M. A. & Ward, P. A. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31–36 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M.A. Farrar (Univ. of Minnesota) for the pKS-GyrB construct; M. Fukata (National Institute for Physiological Science and National Institutes of Natural Sciences) for the 24 pEF-Bos-zDHHC-HA constructs. This study was supported by grants from the Korea Health Technology R&D Project ‘Strategic Center of Cell and Bio Therapy’ (grant no. HI17C2085; H.-S.K.) and ‘Korea Research-Driven Hospital’ (grant no. HI14C1277; H.-S.K.) through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Korea and from the National Research Foundation of Korea funded by the Korea Government (grant no. 2018R1C1B5086482; S.E.L.).

Author information

Affiliations

Authors

Contributions

Y.-C.K provided the design and execution of experiments, data analysis and interpretation and drafting of the manuscript; S.E.L. provided the conception and design of experiments, data analysis and interpretation and drafting of the manuscript; S.K. provided the execution of experiments, data analysis and interpretation and drafting of the manuscript; H.-D.J. provided a critical review of the manuscript; I.H. provided the execution of experiments, data analysis and interpretation; S.J. provided a critical review of the manuscript; E.-B.H. provided data analysis and interpretation and a critical review of the manuscript; K.-S.J. provided the execution of experiments with mass spectrometry, data analysis and interpretation; H.-S.K. provided the conception and design of experiment, data analysis and interpretation and a critical review of the manuscript.

Corresponding author

Correspondence to Hyo-Soo Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary Figures 1–27

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, YC., Lee, S.E., Kim, S.K. et al. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation. Nat Chem Biol 15, 907–916 (2019). https://doi.org/10.1038/s41589-019-0344-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing