Pharmacological convergence reveals a lipid pathway that regulates C. elegans lifespan

Abstract

Phenotypic screening has identified small-molecule modulators of aging, but the mechanism of compound action often remains opaque due to the complexities of mapping protein targets in whole organisms. Here, we combine a library of covalent inhibitors with activity-based protein profiling to coordinately discover bioactive compounds and protein targets that extend lifespan in Caenorhabditis elegans. We identify JZL184—an inhibitor of the mammalian endocannabinoid (eCB) hydrolase monoacylglycerol lipase (MAGL or MGLL)—as a potent inducer of longevity, a result that was initially perplexing as C. elegans does not possess an MAGL ortholog. We instead identify FAAH-4 as a principal target of JZL184 and show that this enzyme, despite lacking homology with MAGL, performs the equivalent metabolic function of degrading eCB-related monoacylglycerides in C. elegans. Small-molecule phenotypic screening thus illuminates pure pharmacological connections marking convergent metabolic functions in distantly related organisms, implicating the FAAH-4/monoacylglyceride pathway as a regulator of lifespan in C. elegans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A chemical proteomic map of serine hydrolase (SH) activities and their chemical inhibition in C. elegans.
Fig. 2: Phenotypic screening identifies SH-directed inhibitors that extend lifespan in C. elegans.
Fig. 3: Identification of FAAH-4 as a principal target of JZL184 in C. elegans.
Fig. 4: FAAH-4 is inhibited by JZL184.
Fig. 5: FAAH-4 has 2-AG and AEA hydrolytic activity in vitro.
Fig. 6: FAAH-4 regulates MAG content and lifespan of C. elegans.

Data availability

The data that support the findings of this study are available within the paper (and its supplementary information files) or from the corresponding author upon reasonable request.

References

  1. 1.

    Finkel, T. The metabolic regulation of aging. Nat. Med. 21, 1416–1423 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M . mTOR is a key modulator of ageing and age-related disease. Nature 493, 338–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R . A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hamilton, B. et al. A systematic RNAi screen for longevity genes in C. elegans. Genes Dev. 19, 1544–1555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Garigan, D. et al. Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161, 1101–1112 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Evason, K., Huang, C., Yamben, I., Covey, D. F. & Kornfeld, K. Anticonvulsant medications extend worm life-span. Science 307, 258–262 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Petrascheck, M., Ye, X. & Buck, L. B. An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450, 553–556 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bachovchin, D. A. et al. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc. Natl Acad. Sci. USA 107, 20941–20946 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Grüner, B. M. et al. An in vivo multiplexed small-molecule screening platform. Nat. Methods 13, 883–889 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Roberts, A. M. et al. Chemoproteomic screening of covalent ligands reveals UBA5 as a novel pancreatic cancer target. ACS Chem. Biol. 12, 899–904 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hsu, K. L. et al. DAGLβ inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat. Chem. Biol. 8, 999–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Cognetta, A. B. et al. Selective N-hydroxyhydantoin carbamate inhibitors of mammalian serine hydrolases. Chem. Biol. 22, 928–937 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Niphakis, M. J. & Cravatt, B. F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83, 341–377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lucanic, M. et al. N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans. Nature 473, 226–229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lin, Y. H. et al. Diacylglycerol lipase regulates lifespan and oxidative stress response by inversely modulating TOR signaling in Drosophila and C. elegans. Aging Cell 13, 755–764 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wang, M. C., O’Rourke, E. J. & Ruvkun, G. Fat metabolism links germline stem cells and longevity in C. elegans. Science 322, 957–960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Folick, A. et al. Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347, 83–86 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Rangaraju, S. et al. Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality. eLife 4, e08833 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Adibekian, A. et al. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat. Chem. Biol. 7, 469–478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Chang, J. W., Cognetta, A. B. III, Niphakis, M. J. & Cravatt, B. F. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition. ACS Chem. Biol. 8, 1590–1599 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kamat, S. S. et al. Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nat. Chem. Biol. 11, 164–171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Arantes-Oliveira, N., Apfeld, J., Dillin, A. & Kenyon, C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295, 502–505 (2002).

    Article  CAS  Google Scholar 

  27. 27.

    Long, J. Z. et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol. 5, 37–44 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Grabner, G. F., Zimmermann, R., Schicho, R. & Taschler, U. Monoglyceride lipase as a drug target: at the crossroads of arachidonic acid metabolism and endocannabinoid signaling. Pharmacol. Ther. 175, 35–46 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9, 76–81 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Shin, S. et al. Characterization of a novel Ser-cisSer-Lys catalytic triad in comparison with the classical Ser-His-Asp triad. J. Biol. Chem. 278, 24937–24943 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cravatt, B. F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Giang, D. K. & Cravatt, B. F. Molecular characterization of human and mouse fatty acid amide hydrolases. Proc. Natl Acad. Sci. USA 94, 2238–2242 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Curnow, A. W. et al. Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl Acad. Sci. USA 94, 11819–11826 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Chang, J. W. et al. Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates. Chem. Biol. 19, 579–588 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Dai, D. F., Chiao, Y. A., Marcinek, D. J., Szeto, H. H. & Rabinovitch, P. S. Mitochondrial oxidative stress in aging and healthspan. Longev. Healthspan 3, 6 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Greer, E. L. & Brunet, A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113–127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Altenhoff, A. M. et al. The OMA orthology database in 2018: retrieving evolutionary relationships among all domains of life through richer web and programmatic interfaces. Nucleic Acids Res. 46, D477–D485 (2017).

    Article  CAS  Google Scholar 

  38. 38.

    Dolinski, K. & Botstein, D. Orthology and functional conservation in eukaryotes. Annu. Rev. Genet. 41, 465–507 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Omelchenko, M. V., Galperin, M. Y., Wolf, Y. I. & Koonin, E. V. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution. Biol. Direct 5, 31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bandyopadhyay, S., Sharan, R. & Ideker, T. Systematic identification of functional orthologs based on protein network comparison. Genome Res. 16, 428–435 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kurnasov, O. et al. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Chem. Biol. 10, 1195–1204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Martell, J. et al. Global cysteine-reactivity profiling during impaired insulin/IGF-1 signaling in C. elegans identifies uncharacterized mediators of longevity. Cell Chem. Biol. 23, 955–966 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Han, S. et al. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 544, 185–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    O’Rourke, E. J., Kuballa, P., Xavier, R. & Ruvkun, G. ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy. Genes Dev. 27, 429–440 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Shmookler Reis, R. J. et al. Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging (Albany NY) 3, 125–147 (2011).

    Article  CAS  Google Scholar 

  46. 46.

    Oakes, M. D., Law, W. J., Clark, T., Bamber, B. A. & Komuniecki, R. Cannabinoids activate monoaminergic signaling to modulate key C. elegans behaviors. J. Neurosci. 37, 2859–2869 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Ogasawara, D. et al. Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition. Proc. Natl Acad. Sci. USA 113, 26–33 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Fagan, S. G. & Campbell, V. A. The influence of cannabinoids on generic traits of neurodegeneration. Br. J. Pharmacol. 171, 1347–1360 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Bilkei-Gorzo, A. The endocannabinoid system in normal and pathological brain ageing. Phil. Trans. R. Soc. Lond. B 367, 3326–3341 (2012).

    Article  CAS  Google Scholar 

  50. 50.

    Piyanova, A. et al. Age-related changes in the endocannabinoid system in the mouse hippocampus. Mech. Ageing Dev. 150, 55–64 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Paix, A., Folkmann, A., Rasoloson, D. & Seydoux, G. High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201, 47–54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Rangaraju, S., Solis, G. M. & Petrascheck, M. High-throughput small-molecule screening in Caenorhabditis elegans. Methods Mol. Biol. 1263, 139–155 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Hulce, J. J., Cognetta, A. B., Niphakis, M. J., Tully, S. E. & Cravatt, B. F. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10, 259–264 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew.Chem. Int. Edn Engl. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  55. 55.

    Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Solis, G. M. et al. Translation attenuation by minocycline enhances longevity and proteostasis in old post-stress-responsive organisms. eLife 7, e40314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nat. Methods 2, 691–697 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Gomez-Amaro, R. L. et al. Measuring food intake and nutrient absorption in Caenorhabditis elegans. Genetics 200, 443–454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Bar-Peled, L. et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Patricelli, M. P., Giang, D. K., Stamp, L. M. & Burbaum, J. J. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 1, 1067–1071 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Hansen, J. Chang, X. She, and G. Solis for discussions and technical expertise in C. elegans, D. Sabatini for the pRK5 vector, and the Caenorhabditis Genetics Center for strains. This work was supported by the NIH (DA033760, CA215249, GM074215), the Damon Runyon Cancer Research Foundation, and Abide Therapeutics.

Author information

Affiliations

Authors

Contributions

A.L.C., L.B.-P., and B.F.C. conceived the project and wrote the paper. A.L.C., M.P., L.B.-P., and B.F.C. designed the experiments. A.L.C., M.P., and L.B.-P. developed the methods. A.L.C. performed the experiments and analyzed data. K.M.L. and G.M.S. generated the putative SH list and nonredundant C. elegans database. A.L.C. and K.M.L. analyzed chemical proteomic data. A.L.C., K.M.L., D.O., A.B.C., and W.H.P. designed and synthesized compounds. A.L.C., P.L.-G. and A.T. generated CRISPR–Cas9 mediated strains and A.D. and M.P. provided the facilities. P. L.-G. and A.L.C. backcrossed and sequenced CRISPR–Cas9-mediated strains. M.P. and A.T. assisted with lifespan experiments and RNA-seq analysis. A.L.C. and G.M.S. generated dendrograms. K.M.L., P.L.-G., D.O., W.H.P., A.D., and M.P. edited the paper.

Corresponding authors

Correspondence to Michael Petrascheck or Liron Bar-Peled or Benjamin F. Cravatt.

Ethics declarations

Competing interests

B.F.C. is a founder and advisor to Abide Therapeutics, a biotechnology company interested in developing serine hydrolase inhibitors and therapeutics.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–6, Supplementary Figures 1–12

Reporting Summary

Supplementary Note 1

Synthetic methods

Supplementary Dataset 1

List of predicted C. elegans SHs, FP-enriched SHs, and gene expression data, related to Fig. 1.

Supplementary Dataset 2

Lifespan data.

Supplementary Dataset 3

Proteomic data, related to Figs. 3 and 4 and Supplementary Figure 7.

Supplementary Dataset 4

Proteomic data, related to Figs. 3 and 4 and Supplementary Table 7.

Supplementary Dataset 5

Proteomic data, related to Fig. 3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, A.L., Lum, K.M., Lara-Gonzalez, P. et al. Pharmacological convergence reveals a lipid pathway that regulates C. elegans lifespan. Nat Chem Biol 15, 453–462 (2019). https://doi.org/10.1038/s41589-019-0243-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing