Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of Chaoborus kairomone chemicals that induce defences in Daphnia


Infochemicals play important roles in aquatic ecosystems. They even modify food web interactions, such as by inducing defenses in prey. In one classic but still not fully understood example, the planktonic freshwater crustacean Daphnia pulex forms specific morphological defenses (neckteeth) induced by chemical cues (kairomones) released from its predator, the phantom midge larva Chaoborus. On the basis of liquid chromatography, mass spectrometry, and chemical synthesis, we report here the chemical identity of the Chaoborus kairomone. The biologically active cues consist of fatty acids conjugated to the amino group of glutamine via the N terminus. These cues are involved in Chaoborus digestive processes, which explains why they are consistently released despite the disadvantage for its emitter. The identification of the kairomone may allow in-depth studies on multiple aspects of this inducible defense system.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical analysis and biological activity of the Chaoborus kairomone.
Fig. 2: Initial chemical analysis of the kairomone.
Fig. 3: Verification of the Chaoborus kairomone using reference compounds.
Fig. 4: Biological activity of the Chaoborus-conditioned medium and activity of synthetically prepared reference compounds.
Fig. 5: Effect of lipid chain on biological activity.

Data availability

All raw data will be provided upon reasonable request.


  1. Hay, M. E. Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Ann. Rev. Mar. Sci. 1, 193–212 (2009).

    Article  Google Scholar 

  2. Atema, J., Fay, R. R., Popper, A. N. & Tavolga, W. N. Sensory Biology of AquaticAnimals. (Springer, New York, NY, 1988)..

  3. Brönmark, C. & Hansson, L.-A. Chemical Ecology in Aquatic Systems. (Oxford University Press, 2012).

  4. Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).

    Article  Google Scholar 

  5. Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: discriminating between handling and digesting prey. Ecol. Monogr. 72, 95–112 (2002).

    Article  Google Scholar 

  6. Dicke, M. & Grostal, P. Chemical detection of natural enemies by arthropods: an ecological perspective. Annu. Rev. Ecol. Syst. 32, 1–23 (2001).

    Article  Google Scholar 

  7. Verschoor, A. M., Vos, M. & Van Der Stap, I. Inducible defences prevent strong population fluctuations in bi- and tritrophic food chains. Ecol. Lett. 7, 1143–1148 (2004).

    Article  Google Scholar 

  8. Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).

    Article  Google Scholar 

  9. Lampert, W. & Kinne, O. Daphnia: development of a model organism in ecology and evolution. Excellence in Ecology 21, 1–275 (2011).

    Google Scholar 

  10. Weiss, L. C., Laforsch, C. & Tollrian, R. Chemical Ecology in Aquatic Systems. (eds. Lars-Anders Hannsson, L.-A. & Brönmark, C.) 111–126 (2012).

  11. Krueger, D. & Dodson, S. I. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. 26, 219–223 (1981).

    Article  Google Scholar 

  12. Weiss, L. C. et al. Onset of kairomone sensitivity and the development of inducible morphological defenses in Daphnia pulex. Hydrobiologia 779, 135–145 (2016).

    Article  CAS  Google Scholar 

  13. Tollrian, R. & Harvell, C. D. The Ecology and Evolution of Inducible Defenses. (Princton University Press, Princton, New Jersey, 1999).

  14. Tollrian, R. Chaoborus crystallinus predation on Daphnia pulex: can induced morphological changes balance effects of body size on vulnerability? Oecologia 101, 151–155 (1995).

    Article  Google Scholar 

  15. Tollrian, R., Duggen, S., Weiss, L. C., Laforsch, C. & Kopp, M. Density-dependent adjustment of inducible defenses. Sci. Rep. 5, 12736 (2015).

    Article  CAS  Google Scholar 

  16. Weiss, L. C., Leimann, J. & Tollrian, R. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation. J. Exp. Biol. 218, 2918–2926 (2015).

    Article  Google Scholar 

  17. Weiss, L. C., Leese, F., Laforsch, C. & Tollrian, R. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia. Proc. Biol. Sci. 282, 20151440 (2015).

    Article  Google Scholar 

  18. Weiss, L. C., Kruppert, S., Laforsch, C. & Tollrian, R. Chaoborus and gasterosteus anti-predator responses in Daphnia pulex are mediated by independent cholinergic and gabaergic neuronal signals. PLoS One 7, e36879 (2012).

    Article  CAS  Google Scholar 

  19. Miyakawa, H. et al. A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nat. Commun. 4, 1856 (2013).

    Article  Google Scholar 

  20. Beckerman, A. P., de Roij, J., Dennis, S. R. & Little, T. J. A shared mechanism of defense against predators and parasites: chitin regulation and its implications for life-history theory. Ecol. Evol. 3, 5119–5126 (2013).

    Article  Google Scholar 

  21. Parejko, K. & Dodson, S. Progress towards characterization of a predator- prey kairomone: Daphnia pulex and Chaoborus americanus. Hydrobiologia 198, 51–59 (1990).

    Article  Google Scholar 

  22. Tollrian, R. & Von Elert, E. Enrichment and purification of Chaoborus kairomone from water: Further steps toward its chemical characterization. Limnol. Oceanogr. 39, 788–796 (1994).

    Article  CAS  Google Scholar 

  23. Alborn, H. T. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276, 945–949 (1997).

    Article  CAS  Google Scholar 

  24. Pohnert, G., Jung, V., Haukioja, E., Lempa, K. & Boland, W. New fatty acid amides from regurgitant of Lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron 55, 11275–11280 (1999).

    Article  CAS  Google Scholar 

  25. Halitschke, R., Schittko, U., Pohnert, G., Boland, W. & Baldwin, I. T. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol. 125, 711–717 (2001).

    Article  CAS  Google Scholar 

  26. Mori, N., Alborn, H. T., Teal, P. E. A. & Tumlinson, J. H. Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea. J. Insect Physiol. 47, 749–757 (2001).

    Article  CAS  Google Scholar 

  27. Mori, N. & Yoshinaga, N. Function and evolutionary diversity of fatty acid amino acid conjugates in insects. J. Plant Interact. 6, 103–107 (2011).

    Article  CAS  Google Scholar 

  28. Dowhan, W. & Bogdanov, M. in Biochemistry of Lipids, Lipoproteins and Membranes (eds. Vance, J. E. & Vance, D. E.) 1–37 (Elsevier Science, 2002).

  29. Selander, E. et al. Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc. Natl. Acad. Sci. USA 112, 6395–6400 (2015).

    Article  CAS  Google Scholar 

  30. Kusch, J. & Heckmann, K. Isolation of the Lembadion-factor, A morphogenetically active signal, that induces Euplotes cells to change from their ovoid form into a larger lateral winged morph. Dev. Genet. 13, 241–246 (1992).

    Article  Google Scholar 

  31. Yasumoto, K. et al. Isolation of new aliphatic sulfates and sulfamate as the Daphnia Kairomones inducing morphological change of a phytoplankton Scenedesmus gutwinskii. Chem. Pharm. Bull. (Tokyo) 56, 133–136 (2008).

    Article  CAS  Google Scholar 

  32. Yasumoto, K. et al. Aliphatic sulfates released from Daphnia induce morphological defense of phytoplankton: isolation and synthesis of kairomones. Tetrahedr. Lett. 46, 4765–4767 (2005).

    Article  CAS  Google Scholar 

  33. Alborn, H. T., Jones, T. H., Stenhagen, G. S. & Tumlinson, J. H. Identification and synthesis of volicitin and related components from beet armyworm oral secretions. J. Chem. Ecol. 26, 203–220 (2000).

    Article  CAS  Google Scholar 

  34. Paré, P. W., Alborn, H. T. & Tumlinson, J. H. Concerted biosynthesis of an insect elicitor of plant volatiles. Proc. Natl. Acad. Sci. USA 95, 13971–13975 (1998).

    Article  Google Scholar 

  35. Yoshinaga, N. et al. Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae. Proc. Natl. Acad. Sci. USA 105, 18058–18063 (2008).

    Article  CAS  Google Scholar 

  36. Colbourne, J. K. et al. The ecoresponsive genome of Daphnia pulex. Science 331, 555–561 (2011).

    Article  CAS  Google Scholar 

  37. Tollrian, R. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity morphological effects of Chaoborus. J. Plankton Res. 15, 1309–1318 (1993).

    Article  Google Scholar 

Download references


We dedicate our study to the memory of our inspiring friend S. Dodson. He would have loved to see the results. We thank G. Pohnert for discussion and S. Gorb and S. Kruppert for providing the Chaoborus predation sequence. We thank L. Weider (University of Oklahoma) for the R9 clone and T. White for language editing.

Author information

Authors and Affiliations



L.C.W. and R.T. designed the research; M.L. performed the initial ESI–MS analysis, J.Z. prepared the first kairomone derivative; L.C.W. and R.T. designed and L.C.W. and S.M.B. conducted biological experiments; B.A. and N.M.-N. prepared the synthetic kairomone derivatives, U.S. performed chemical analysis; S.W.M., J.K., M.M., and O.J.S. quantified the kairomone concentration; L.C.W., R.T., B.A., and N.M.-N. wrote the manuscript; all authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Ralph Tollrian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–6, Supplementary Figures 1–8

Reporting Summary

Supplementary Note 1

Synthetic Procedures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weiss, L.C., Albada, B., Becker, S.M. et al. Identification of Chaoborus kairomone chemicals that induce defences in Daphnia. Nat Chem Biol 14, 1133–1139 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing