Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and genomic decoding of human and plant myristoylomes reveals a definitive recognition pattern

Abstract

An organism’s entire protein modification repertoire has yet to be comprehensively mapped. N-myristoylation (MYR) is a crucial eukaryotic N-terminal protein modification. Here we mapped complete Homo sapiens and Arabidopsis thaliana myristoylomes. The crystal structures of human modifier NMT1 complexed with reactive and nonreactive target-mimicking peptide ligands revealed unexpected binding clefts and a modifier recognition pattern. This information allowed integrated mapping of myristoylomes using peptide macroarrays, dedicated prediction algorithms, and in vivo mass spectrometry. Global MYR profiling at the genomic scale identified over a thousand novel, heterogeneous targets in both organisms. Surprisingly, MYR involved a non-negligible set of overlapping targets with N-acetylation, and the sequence signature marks for a third proximal acylation—S-palmitoylation—were genomically imprinted, allowing recognition of sequences exhibiting both acylations. Together, the data extend the N-end rule concept for Gly-starting proteins to subcellular compartmentalization and reveal the main neighbors influencing protein modification profiles and consequent cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The NMT recognition site is characterized by four distinct pockets, a bottleneck, and an outer salt bridge.
Fig. 2: MS MYR diagnoses.
Fig. 3: Impact and imprinting of S-palmitoylation at the genomic scale.
Fig. 4: Modification pattern of proteins starting with glycine.
Fig. 5: Sequential action of the various enzymes involved in N-terminal maturation of Met-Gly-starting polypeptide chains.

Similar content being viewed by others

References

  1. Kelleher, N. L. A cell-based approach to the human proteome project. J. Am. Soc. Mass Spectrom. 23, 1617–1624 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Marino, G., Eckhard, U. & Overall, C. M. Protein termini and their modifications revealed by positional proteomics. ACS Chem. Biol. 10, 1754–1764 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Giglione, C., Fieulaine, S. & Meinnel, T. N-terminal protein modifications: bringing back into play the ribosome. Biochimie 114, 134–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Aksnes, H., Drazic, A., Marie, M. & Arnesen, T. First things first: vital protein marks by N-terminal acetyltransferases. Trends Biochem. Sci. 41, 746–760 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Kumar, M. et al. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization. Science 353, 166–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Jiang, H. et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev. 118, 919–988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buddelmeijer, N. The molecular mechanism of bacterial lipoprotein modification–how, when and why? FEMS Microbiol. Rev 39, 246–261 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Hentschel, A., Zahedi, R. P. & Ahrends, R. Protein lipid modifications–more than just a greasy ballast. Proteomics 16, 759–782 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Resh, M. D. Covalent lipid modifications of proteins. Curr. Biol. 23, R431–R435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meinnel, T. & Giglione, C. Tools for analyzing and predicting N-terminal protein modifications. Proteomics 8, 626–649 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hannoush, R. N. Synthetic protein lipidation. Curr. Opin. Chem. Biol. 28, 39–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Tate, E. W., Kalesh, K. A., Lanyon-Hogg, T., Storck, E. M. & Thinon, E. Global profiling of protein lipidation using chemical proteomic technologies. Curr. Opin. Chem. Biol. 24, 48–57 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thinon, E. et al. Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nat. Commun. 5, 4919 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Wright, M. H. et al. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nat. Chem. 6, 112–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Wright, M. H., Paape, D., Price, H. P., Smith, D. F. & Tate, E. W. Global profiling and inhibition of protein lipidation in vector and host stages of the sleeping sickness parasite Trypanosoma brucei. ACS Infect. Dis. 2, 427–441 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roberts, A. J. & Fairlamb, A. H. The N-myristoylome of Trypanosoma cruzi. Sci. Rep. 6, 31078 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Traverso, J. A., Giglione, C. & Meinnel, T. High-throughput profiling of N-myristoylation substrate specificity across species including pathogens. Proteomics 13, 25–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Bhatnagar, R. S., Ashrafi, K., Futterer, K., Waksman, G. & Gordon, J. I. Biology and enzymology of protein N-myristoylation. in: The Enzymes, Vol. XXI (Protein Lipidation) (Tamanoi, F. & Sigman, D. S., eds., pp. 241–286, Academic Press, San Diego, 2001).

  20. Pierre, M. et al. N-myristoylation regulates the SnRK1 pathway in Arabidopsis. Plant Cell 19, 2804–2821 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martinez, A. et al. Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics 8, 2809–2831 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Boisson, B. & Meinnel, T. A continuous assay of myristoyl-CoA:protein N-myristoyltransferase for proteomic analysis. Anal. Biochem. 322, 116–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, S. H. et al. N-myristoyltransferase 1 is essential in early mouse development. J. Biol. Chem. 280, 18990–18995 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Burnaevskiy, N., Peng, T., Reddick, L. E., Hang, H. C. & Alto, N. M. Myristoylome profiling reveals a concerted mechanism of ARF GTPase deacylation by the bacterial protease IpaJ. Mol. Cell 58, 110–122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gaudet, P. et al. The neXtProt knowledgebase on human proteins: 2017 update. Nucleic Acids Res. 45 D1, D177–D182 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Traverso, J. A. et al. Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study. Plant Cell 25, 1056–1077 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, F., Xue, Y., Yao, X. & Xu, Y. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics 22, 894–896 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Blanc, M. et al. SwissPalm: Protein Palmitoylation database. F1000Res 4, 261 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Hemsley, P. A., Weimar, T., Lilley, K. S., Dupree, P. & Grierson, C. S. A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. New Phytol. 197, 805–814 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Majeran, W., Le Caer, J.P., Ponnala, L., Meinnel, T. & Giglione, C.= Targeted profiling of A. thaliana sub-proteomes illuminates new co- and post-translationally N-terminal Myristoylated proteins. Plant Cell 30, 543–562 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zha, J., Weiler, S., Oh, K. J., Wei, M. C. & Korsmeyer, S. J. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290, 1761–1765 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Vilas, G. L. et al. Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events. Proc. Natl Acad. Sci. USA 103, 6542–6547 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martin, D. D. et al. Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of huntingtin. Hum. Mol. Genet. 23, 3166–3179 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Linster, E. et al. Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat. Commun. 6, 7640 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Arnesen, T. et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl Acad. Sci. USA 106, 8157–8162 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bienvenut, W. V. et al. Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol. Cell. Proteomics 11, M111.015131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Colaert, N., Helsens, K., Martens, L., Vandekerckhove, J. & Gevaert, K. Improved visualization of protein consensus sequences by iceLogo. Nat. Methods 6, 786–787 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Kremers, P. et al. Cytochrome P-450 monooxygenase activities in human and rat liver microsomes. Eur. J. Biochem. 118, 599–606 (1981).

    Article  CAS  PubMed  Google Scholar 

  39. Frottin, F. et al. MetAP1 and MetAP2 drive cell selectivity for a potent anti-cancer agent in synergy, by controlling glutathione redox state. Oncotarget 7, 63306–63323 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bienvenut, W. V., Giglione, C. & Meinnel, T. SILProNAQ: a convenient approach for proteome-wide analysis of protein N-termini and N-terminal acetylation quantitation. Methods Mol. Biol 1574, 17–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Espagne, C., Martinez, A., Valot, B., Meinnel, T. & Giglione, C. Alternative and effective proteomic analysis in Arabidopsis. Proteomics 7, 3788–3799 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr 69, 1204–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schüttelkopf, A. W. & van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr 60, 1355–1363 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. DeLano, W.L. The PyMOL Molecular Graphics System. http://www.pymol.org (2002).

  47. Suckau, D. et al. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 376, 952–965 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Vizcaíno, J. A. et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Agence Nationale de la Recherche (ANR-2010-BLAN-1611-01) and Fondation ARC (SFI2011120111203841). The team benefits from the support of the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS). C.D., B.C., and S.C. were supported by postdoctoral fellowships (CNRS). We thank W. Majeran and C. Micalella for initial help with sample preparation and in vitro assays and all members of the group for stimulating discussions. The 2016 innovative experimental training Master class students hosted in the Gif laboratory actively contributed to early crystallographic attempts of one NMT complex. C. Duyckaerts (APHP) and Hopital Pitié Salpêtrière (Université Pierre et Marie Curie, Paris) kindly allowed access to human tissue samples from Neuro-CEB (http://www.neuroceb.org/) and M.-A. Loriot and A. Al Ali to sample preparation. J. Bignon (CNRS, Gif) allowed access to human cell culture facility. This work used the facilities and expertise of the SICaPS mass spectrometry platform at I2BC (Gif). We thank ESRF staff for help with data collection.

Author information

Authors and Affiliations

Authors

Contributions

C.D. performed NMT cloning, purification, and structural analysis. B.C. and S.C. performed in vitro assays. W.V.B. and J.P.L.C performed mass spectrometry measurements and analysis. C.L.E. and J.-M.S. built the SVM classifiers. C.G. and T.M. designed the research, supervised the overall project, analyzed the data, and wrote the manuscript.

Corresponding authors

Correspondence to Carmela Giglione or Thierry Meinnel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3, Supplementary Figures 1–5

Reporting Summary

Supplementary Dataset 1

Data associated with the 2k macroarray and the Arabidopsis thaliana myristoylome

Supplementary Dataset 2

Complete human myristoylome

Supplementary Dataset 3

Protein N-Gly termini isolated from humans

Supplementary Dataset 4

Protein N-Gly termini from Arabidopsis thaliana

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castrec, B., Dian, C., Ciccone, S. et al. Structural and genomic decoding of human and plant myristoylomes reveals a definitive recognition pattern. Nat Chem Biol 14, 671–679 (2018). https://doi.org/10.1038/s41589-018-0077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0077-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research