Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proteomic and interactomic insights into the molecular basis of cell functional diversity

An Author Correction to this article was published on 17 April 2020

This article has been updated

Abstract

The ability of living systems to adapt to changing conditions originates from their capacity to change their molecular constitution. This is achieved by multiple mechanisms that modulate the quantitative composition and the diversity of the molecular inventory. Molecular diversification is particularly pronounced on the proteome level, at which multiple proteoforms derived from the same gene can in turn combinatorially form different protein complexes, thus expanding the repertoire of functional modules in the cell. The study of molecular and modular diversity and their involvement in responses to changing conditions has only recently become possible through the development of new ‘omics’-based screening technologies. This Review explores our current knowledge of the mechanisms regulating functional diversification along the axis of gene expression, with a focus on the proteome and interactome. We explore the interdependence between different molecular levels and how this contributes to functional diversity. Finally, we highlight several recent techniques for studying molecular diversity, with specific focus on mass spectrometry-based analysis of the proteome and its organization into functional modules, and examine future directions for this rapidly growing field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The generation of functional diversity at different molecular levels.
Fig. 2: Tissue-specific promoter usage and alternative splicing lead to different pyruvate kinase isoforms.
Fig. 3: Proteome balance and post-translational modification crosstalk.
Fig. 4: Protein assembly dynamics and proteoform-specific complex formation.
Fig. 5: Cis-regulatory and trans-regulatory feedback loops modulate alternative splicing.
Fig. 6: Strategies for generating proteome-wide interactome maps.
Fig. 7: Proteoform-specific assembly characteristics of PKM.

Similar content being viewed by others

Change history

References

  1. Beadle, G. W. & Tatum, E. L. Genetic control of biochemical reactions in neurospora. Proc. Natl Acad. Sci. USA 27, 499–506 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Collins, F. S., Lander, E. S., Rogers, J. & Waterson, R. H. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Google Scholar 

  3. Carter, H., Hofree, M. & Ideker, T. Genotype to phenotype via network analysis. Curr. Opin. Genet. Dev. 23, 611–621 (2013).

    CAS  PubMed  Google Scholar 

  4. Rauscher, B., Valentini, E., Hardeland, U. & Boutros, M. Phenotype databases for genetic screens in human cells. J. Biotechnol. 261, 63–69 (2017).

    CAS  PubMed  Google Scholar 

  5. Amberger, J., Bocchini, C. & Hamosh, A. A new face and new challenges for Online Mendelian Inheritance in Man (OMIM®). Hum. Mutat. 32, 564–567 (2011).

    PubMed  Google Scholar 

  6. Arkin, A. P. & Schaffer, D. V. Network news: innovations in 21st century systems biology. Cell 144, 844–849 (2011).

    CAS  PubMed  Google Scholar 

  7. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    CAS  PubMed  Google Scholar 

  8. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    PubMed  Google Scholar 

  9. Li, J. J., Bickel, P. J. & Biggin, M. D. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ 2, e270 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Jovanovic, M. et al. Dynamic profiling of the protein life cycle in response to pathogens. Science 347, 1259038 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Marguerat, S. et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151, 671–683 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thompson, D., Regev, A. & Roy, S. Comparative analysis of gene regulatory networks: from network reconstruction to evolution. Annu. Rev. Cell Dev. Biol. 31, 399–428 (2015).

    CAS  PubMed  Google Scholar 

  13. Bernadskaya, Y. & Christiaen, L. Transcriptional control of developmental cell behaviors. Annu. Rev. Cell Dev. Biol. 32, 77–101 (2016).

    CAS  PubMed  Google Scholar 

  14. Kilchert, C., Wittmann, S. & Vasiljeva, L. The regulation and functions of the nuclear RNA exosome complex. Nat. Rev. Mol. Cell Biol. 17, 227–239 (2016).

    CAS  PubMed  Google Scholar 

  15. Magnuson, B., Bedi, K. & Ljungman, M. Genome stability versus transcript diversity. DNA Repair 44, 81–86 (2016). This review discusses sources of error from the genome to the proteome and how errors can contribute to molecular diversity and evolution.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schneider, C., Kudla, G., Wlotzka, W., Tuck, A. & Tollervey, D. Transcriptome-wide analysis of exosome targets. Mol. Cell 48, 422–433 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Popp, M. W. & Maquat, L. E. Nonsense-mediated mRNA decay and cancer. Curr. Opin. Genet. Dev. 48, 44–50 (2018).

    CAS  PubMed  Google Scholar 

  18. Wong, J. J. L. et al. Orchestrated intron retention regulates normal granulocyte differentiation. Cell 154, 583–595 (2013).

    CAS  PubMed  Google Scholar 

  19. Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 406–420 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Machnicka, M. A. et al. MODOMICS: a database of RNA modification pathways — 2013 update. Nucleic Acids Res. 41, D262–D267 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18, 31–42 (2017).

    CAS  PubMed  Google Scholar 

  22. Ranjan, N. & Leidel, S. A. The epitranscriptome in translation regulation: mRNA and tRNA modifications as the two sides of the same coin? FEBS Lett. 593, 1483–1493 (2019).

    CAS  PubMed  Google Scholar 

  23. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    CAS  PubMed  Google Scholar 

  24. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bentley, D. L. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15, 163–175 (2014). This comprehensive review discusses the mechanisms and interdependencies of mRNA transcription and processing.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. de Klerk, E. & ‘t Hoen, P. A. C. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet. 31, 128–139 (2015).

    PubMed  Google Scholar 

  27. Garieri, M. et al. The effect of genetic variation on promoter usage and enhancer activity. Nat. Commun. 8, 1358 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Reyes, A. & Huber, W. Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic Acids Res. 46, 582–592 (2018).

    CAS  PubMed  Google Scholar 

  29. Proudfoot, N. J., Furger, A. & Dye, M. J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    CAS  PubMed  Google Scholar 

  30. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    CAS  PubMed  Google Scholar 

  32. Tress, M. L. et al. The implications of alternative splicing in the ENCODE protein complement. Proc. Natl Acad. Sci. USA 104, 5495–5500 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi, Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat. Rev. Mol. Cell Biol. 18, 655–670 (2017).

    CAS  PubMed  Google Scholar 

  34. Lee, Y. & Rio, D. C. Mechanisms and regulation of alternative pre-mRNA splicing. Annu. Rev. Biochem. 84, 291–323 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Costa, V., Aprile, M., Esposito, R. & Ciccodicola, A. RNA-seq and human complex diseases: recent accomplishments and future perspectives. Eur. J. Hum. Genet. 21, 134–142 (2013).

    CAS  PubMed  Google Scholar 

  37. Pistoni, M., Ghigna, C. & Gabellini, D. Alternative splicing and muscular dystrophy. RNA Biol. 7, 441–452 (2010).

    CAS  PubMed  Google Scholar 

  38. Chaneton, B. & Gottlieb, E. Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem. Sci. 37, 309–316 (2012).

    CAS  PubMed  Google Scholar 

  39. Buljan, M. et al. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell 46, 871–883 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yablonovitch, A. L., Deng, P., Jacobson, D. & Li, J. B. The evolution and adaptation of A-to-I RNA editing. PLoS Genet. 13, e1007064 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Picardi, E., D’Erchia, A. M., Lo Giudice, C. & Pesole, G. REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res. 45, D750–D757 (2017).

    CAS  PubMed  Google Scholar 

  42. Maas, S., Kawahara, Y., Tamburro, K. M. & Nishikura, K. A-to-I RNA editing and human disease. RNA Biol. 3, 1–9 (2006).

    CAS  PubMed  Google Scholar 

  43. Tang, S. J. et al. Cis- and trans-regulations of pre-mRNA splicing by RNA editing enzymes influence cancer development. Nat. Commun. 11, 799 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zipeto, M. A., Jiang, Q., Melese, E. & Jamieson, C. H. M. RNA rewriting, recoding, and rewiring in human disease. Trends Mol. Med. 21, 549–559 (2015).

    CAS  PubMed  Google Scholar 

  45. Benne, R. The long and the short of it. Nature 380, 391–392 (1996).

    CAS  PubMed  Google Scholar 

  46. Tress, M. L., Abascal, F. & Valencia, A. Alternative splicing may not be the key to proteome complexity. Trends Biochem. Sci. 42, 98–110 (2017).

    CAS  PubMed  Google Scholar 

  47. Wan, Y. & Larson, D. R. Splicing heterogeneity: separating signal from noise. Genome Biol. 19, 86 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016). This study discusses the relationship between mRNA abundance and protein levels.

    CAS  PubMed  Google Scholar 

  49. Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86, 193–224 (2017).

    CAS  PubMed  Google Scholar 

  50. Varshavsky, A. N-degron and C-degron pathways of protein degradation. Proc. Natl Acad. Sci. USA 116, 358–366 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Harper, J. W. & Bennett, E. J. Proteome complexity and the forces that drive proteome imbalance. Nature 537, 328–338 (2016). This review discusses the regulation and balancing of protein synthesis and degradation.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, Y. et al. Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat. Biotechnol. 37, 314–322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Beyer, A., Hollunder, J., Nasheuer, H.-P. & Wilhelm, T. Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol. Cell. Proteomics 3, 1083–1092 (2004).

    CAS  PubMed  Google Scholar 

  55. Malmström, J. et al. Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460, 762–765 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Milo, R. What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35, 1050–1055 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Brar, G. A. Beyond the triplet code: context cues transform translation. Cell 167, 1681–1692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kearse, M. G. & Wilusz, J. E. Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev. 31, 1717–1731 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Loftfield, R. B. & Vanderjagt, D. The frequency of errors in protein biosynthesis. Biochem. J. 128, 1353–1356 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372 (2005).

    CAS  Google Scholar 

  61. Wolan, D. W., Zorn, J. A., Gray, D. C. & Wells, J. A. Small-molecule activators of a proenzyme. Science 326, 853–858 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shalini, S., Dorstyn, L., Dawar, S. & Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ. 22, 526–539 (2015).

    CAS  PubMed  Google Scholar 

  63. Puente, X. S., Sánchez, L. M., Overall, C. M. & López-Otín, C. Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544–558 (2003).

    CAS  PubMed  Google Scholar 

  64. Khoury, G. A., Baliban, R. C. & Floudas, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the Swiss-Prot database. Sci. Rep. 1, 90 (2011).

    CAS  PubMed Central  Google Scholar 

  65. Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018). This study presents the current estimation of how many proteoforms are expressed in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    CAS  PubMed  Google Scholar 

  67. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    CAS  PubMed  Google Scholar 

  68. Wu, Z., Huang, R. & Yuan, L. Crosstalk of intracellular post-translational modifications in cancer. Arch. Biochem. Biophys. 676, 108138 (2019).

    CAS  PubMed  Google Scholar 

  69. Kim, M.-S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    CAS  PubMed  Google Scholar 

  71. Toby, T. K., Fornelli, L. & Kelleher, N. L. Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. 9, 499–519 (2016).

    CAS  Google Scholar 

  72. Tran, J. C. et al. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480, 254–258 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Anderson, L. C. et al. Identification and characterization of human proteoforms by top-down LC-21 Tesla FT-ICR mass spectrometry. J. Proteome Res. 16, 1087–1096 (2017).

    CAS  PubMed  Google Scholar 

  74. Kelemen, O. et al. Function of alternative splicing. Gene 514, 1–30 (2013).

    CAS  PubMed  Google Scholar 

  75. Liu, F., Lössl, P., Scheltema, R., Viner, R. & Heck, A. J. R. Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification. Nat. Commun. 8, 15473 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Götze, M., Iacobucci, C., Ihling, C. H. & Sinz, A. A simple cross-linking/mass spectrometry workflow for studying system-wide protein interactions. Anal. Chem. 91, 10236–10244 (2019).

    PubMed  Google Scholar 

  77. Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).

    PubMed  Google Scholar 

  78. Feng, Y. et al. Global analysis of protein structural changes in complex proteomes. Nat. Biotechnol. 32, 1036–1044 (2014).

    CAS  PubMed  Google Scholar 

  79. Sluchanko, N. N. & Gusev, N. B. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins. FEBS J. 284, 1279–1295 (2017).

    CAS  PubMed  Google Scholar 

  80. Pennington, K., Chan, T., Torres, M. & Andersen, J. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein–protein interactions. Oncogene 37, 5587–5604 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Huttlin, E. L. et al. The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425–440 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505–509 (2017). This study describes the largest human PPI network generated by AP-MS to date.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Drew, K. et al. Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes. Mol. Syst. Biol. 13, 932 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Ruepp, A. et al. CORUM: the comprehensive resource of mammalian protein complexes — 2009. Nucleic Acids Res. 38, D497–D501 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Giurgiu, M. et al. CORUM: the comprehensive resource of mammalian protein complexes — 2019. Nucleic Acids Res. 47, D559–D563 (2019).

    CAS  PubMed  Google Scholar 

  86. Gaulton, A. et al. The Complex Portal — an encyclopaedia of macromolecular complexes. Nucleic Acids Res. 43, D479–D484 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Casanova, E. B. et al. Complex Portal 2018: extended content and enhanced visualization tools for macromolecular complexes. Nucleic Acids Res. 47, D550–D558 (2018).

    PubMed Central  Google Scholar 

  88. Marsh, J. A. & Teichmann, S. A. Structure, dynamics, assembly, and evolution of protein complexes. Annu. Rev. Biochem. 84, 551–575 (2015).

    CAS  PubMed  Google Scholar 

  89. Levy, E. D. & Pereira-Leal, J. B. Evolution and dynamics of protein interactions and networks. Curr. Opin. Struct. Biol. 18, 349–357 (2008).

    CAS  PubMed  Google Scholar 

  90. Ellis, R. J. Molecular chaperones: assisting assembly in addition to folding. Trends Biochem. Sci. 31, 395–401 (2006).

    CAS  PubMed  Google Scholar 

  91. Chen, S., Synowsky, S., Tinti, M. & MacKintosh, C. The capture of phosphoproteins by 14-3-3 proteins mediates actions of insulin. Trends Endocrinol. Metab. 22, 429–436 (2011).

    PubMed  Google Scholar 

  92. Collins, B. C. et al. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat. Methods 10, 1246–1253 (2013).

    CAS  PubMed  Google Scholar 

  93. Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).

    CAS  PubMed  Google Scholar 

  94. Jangi, M. & Sharp, P. A. Building robust transcriptomes with master splicing factors. Cell 159, 487–498 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Großbach, J. et al. Integration of transcriptome, proteome and phosphoproteome data elucidates the genetic control of molecular networks. Preprint at https://doi.org/10.1101/703140 (2019). This recent study investigates quantitative trait loci on different molecular levels and how they mediate the effects of genomic variants in multilayered molecular networks.

  96. Williams, E. G. et al. Systems proteomics of liver mitochondria function. Science 352, aad0189 (2016).

    PubMed  Google Scholar 

  97. Wu, Y. et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158, 1415–1430 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Picotti, P. et al. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494, 266–270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hrdlickova, R., Toloue, M. & Tian, B. RNA-seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA 8, e1364 (2017).

    Google Scholar 

  100. Levy, S. E. & Myers, R. M. Advancements in next-generation sequencing. Annu. Rev. Genomics Hum. Genet. 17, 95–115 (2016).

    CAS  PubMed  Google Scholar 

  101. Reuter, J. A., Spacek, D. V. & Snyder, M. P. High-throughput sequencing technologies. Mol. Cell 58, 586–597 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    CAS  PubMed  Google Scholar 

  103. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    CAS  PubMed  Google Scholar 

  104. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    CAS  PubMed  Google Scholar 

  105. Schaffer, L. V. et al. Identification and quantification of proteoforms by mass spectrometry. Proteomics 19, 1800361 (2019). This recent review discusses the current state of proteoform identification and quantification by top-down proteomics.

    Google Scholar 

  106. He, Z., Huang, T., Zhao, C. & Teng, B. in Modern Proteomics — Sample Preparation, Analysis and Practical Applications (eds Mirzaei, H. & Carrasco, M.) 237–242 (Springer, 2016).

  107. Han, X., Aslanian, A. & Yates, J. R. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12, 483–490 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Bantscheff, M., Lemeer, S., Savitski, M. M. & Kuster, B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 404, 939–965 (2012).

    CAS  PubMed  Google Scholar 

  109. Gillet, L. C., Leitner, A. & Aebersold, R. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu. Rev. Anal. Chem. 9, 449–472 (2016). This in-depth review discusses current mass spectrometry techniques for bottom-up proteomics.

    Google Scholar 

  110. Bunt, G. & Wouters, F. S. FRET from single to multiplexed signaling events. Biophys. Rev. 9, 119–129 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Hu, C. D., Chinenov, Y. & Kerppola, T. K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798 (2002).

    CAS  PubMed  Google Scholar 

  112. Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Martell, J. D. et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30, 1143–1148 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Becher, I. et al. Pervasive protein thermal stability variation during the cell cycle. Cell 173, 1495–1507.e18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Piazza, I. et al. A map of protein–metabolite interactions reveals principles of chemical communication. Cell 172, 358–372.e23 (2018).

    CAS  PubMed  Google Scholar 

  116. Rolland, T. et al. A proteome-scale map of the human interactome network. Cell 159, 1212–1226 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Braun, P. et al. An experimentally derived confidence score for binary protein–protein interactions. Nat. Methods 6, 91–97 (2009).

    CAS  PubMed  Google Scholar 

  118. Hein, M. Y. et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723 (2015).

    CAS  PubMed  Google Scholar 

  119. Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nat. Methods 10, 730–736 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Trinkle-Mulcahy, L. Recent advances in proximity-based labeling methods for interactome mapping. F1000Res. 8, 135 (2019).

    CAS  Google Scholar 

  121. Gingras, A. C., Abe, K. T. & Raught, B. Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr. Opin. Chem. Biol. 48, 44–54 (2019). This excellent review discusses the current state of proximity labelling techniques to analyse protein complexes.

    CAS  PubMed  Google Scholar 

  122. Gupta, G. D. et al. A dynamic protein interaction landscape of the human centrosome–cilium interface. Cell 163, 1484–1499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, X. et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat. Commun. 9, 1188 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. Liu, X., Yang, W., Gao, Q. & Regnier, F. Toward chromatographic analysis of interacting protein networks. J. Chromatogr. A 1178, 24–32 (2008).

    CAS  PubMed  Google Scholar 

  125. Dong, M. et al. A “tagless” strategy for identification of stable protein complexes genome-wide by multidimensional orthogonal chromatographic separation and iTRAQ reagent tracking. J. Proteome Res. 7, 1836–1849 (2008).

    CAS  PubMed  Google Scholar 

  126. Kristensen, A. R., Gsponer, J. & Foster, L. J. A high-throughput approach for measuring temporal changes in the interactome. Nat. Methods 9, 907–909 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kristensen, A. R. & Foster, L. J. in Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) (ed. Warscheid, B.) 263–270 (Humana Press, 2014).

  128. Havugimana, P. C. et al. A census of human soluble protein complexes. Cell 150, 1068–1081 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wan, C. et al. Panorama of ancient metazoan macromolecular complexes. Nature 525, 339–344 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Salas, D., Stacey, R. G., Akinlaja, M. & Foster, L. J. Next-generation interactomics: considerations for the use of co-elution to measure protein interaction networks. Mol. Cell. Proteomics 19, 1–10 (2020). This recent review discusses the techniques, limitations and possibilities of co-fractionation mass spectrometry approaches for PPI and protein complex mapping.

    CAS  PubMed  Google Scholar 

  131. Scott, N. E., Brown, L. M., Kristensen, A. R. & Foster, L. J. Development of a computational framework for the analysis of protein correlation profiling and spatial proteomics experiments. J. Proteomics 118, 112–129 (2015).

    CAS  PubMed  Google Scholar 

  132. Hu, L. Z. et al. EPIC: software toolkit for elution profile-based inference of protein complexes. Nat. Methods 16, 737–742 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Heusel, M. et al. Complex-centric proteome profiling by SEC-SWATH-MS. Mol. Syst. Biol. 15, e8438 (2019).

    PubMed  PubMed Central  Google Scholar 

  134. Heusel, M. et al. A global screen for assembly state changes of the mitotic proteome by SEC-SWATH-MS. Cell Syst. 10, 133–155.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Varjosalo, M. et al. The protein interaction landscape of the human CMGC kinase group. Cell Rep. 3, 1306–1320 (2013).

    CAS  PubMed  Google Scholar 

  136. Scott, N. E. et al. Interactome disassembly during apoptosis occurs independent of caspase cleavage. Mol. Syst. Biol. 13, 906 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Ni, J. Z. et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21, 708–718 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Aebersold laboratory who provided input to the content and presentation of the Review. The authors further thank B. Collins, L. Sieverling, J. Čuklina, C. Dörig, U. Kutay and M. Claassen for reading and providing feedback on different parts of the Review. R.A. acknowledges funding support from the SystemsX.ch projects PhosphoNetX PPM and TbX, as well as from the European Research Council (ERC-20140AdG 670821). I.B. acknowledges funding support from the Swiss National Science Foundation (31003A_166435).

Author information

Authors and Affiliations

Authors

Contributions

I.B. researched data for the review. I.B. and R.A. wrote and edited the manuscript before submission.

Corresponding author

Correspondence to Ruedi Aebersold.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Ivan Marazzi and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Complex Portal: https://www.ebi.ac.uk/complexportal/home

CORUM: https://mips.helmholtz-muenchen.de/corum/

GENCODE database: https://www.gencodegenes.org/human/stats.html

Supplementary information

Glossary

Interactome

The whole set of physical interactions between molecules in a cell, here specifically referring to protein–protein interactions.

Proteoform

A protein species with a unique combination of amino acid sequence and post-translational modifications. Multiple alternative proteoforms can originate from the same gene locus.

Isoforms

Alternative mRNA transcripts originating from the same gene locus.

Epitranscriptome

The whole set of biochemical modifications of RNAs in a cell, with the methylation of adenosine being the most prominent modification.

Alternative polyadenylation

Deviations from the standard process of polyadenylation, including the usage of different poly(A) start sites or variable length of the transcript’s 3′ untranslated region.

Synonymous substitutions

DNA base substitutions in an exon of a protein-coding gene that do not cause a change in the translated protein sequence.

N-degron pathways

A set of proteolytic systems that can recognize proteins containing N-degrons, thereby causing the degradation of these proteins (formerly ‘N-end rule pathways’). N-degrons are degradation signals in the amino-terminal region of a protein, which relate its in vivo half-life to the identity of its amino-terminal composition.

C-degron pathways

A set of proteolytic systems that can recognize proteins containing C-degrons, thereby causing the degradation of these proteins. C-degrons are degradation signals in the carboxy-terminal region of a protein, which relate its in vivo half-life to the identity of its carboxy-terminal composition.

SUMOylation

The post-translational modification of a protein by covalently attached small ubiquitin-like modifier (SUMO) proteins.

Alternative splicing-coupled nonsense-mediated mRNA decay

A regulatory mechanism in which alternative splicing events introduce premature termination codons that lead to the downregulation of the transcript through the process of nonsense-mediated mRNA decay.

Quantitative trait loci

DNA loci that correlate with the variation of a quantitative trait in the phenotype.

Yeast two-hybrid screens

(Y2H screens). A strategy to identify protein–protein interactions in which one target protein is fused with a DNA-binding domain and a second target protein is fused with a respective transcriptional activation domain. When co-expressed in yeast, if the two target proteins interact in the nucleus, they initiate the transcription of a reporter gene.

Co-fractionation coupled to mass spectrometry

(CoFrac-MS). A strategy for the global mapping of protein–protein interactions and protein complexes, involving the native extraction and subsequent separation of protein complexes according to their physicochemical properties, followed by mass spectrometry analysis.

False discovery rates

A metric used for the control of the error rate in experiments affected by the multiple testing problem.

Graph partitioning

The process of dividing a graph (for example, a protein–protein interaction network) into smaller connected subnetworks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bludau, I., Aebersold, R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat Rev Mol Cell Biol 21, 327–340 (2020). https://doi.org/10.1038/s41580-020-0231-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-0231-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing